
Cache Influence on Worst Case Execution Time of Network

Stacks

Jork Löser Hermann Härtig

Dresden University of Technology

Department of Computer Science

D-01062 Dresden, Germany
email: jork.loeser@inf.tu-dresden.de

Abstract

We apply the cache partitioning technique on a
network stack to derive the influence of caches on
worst case execution times of complex applications.
We demonstrate that the overhead caused by cache
misses when receiving packets of typical sizes from
the network is reduced from 310% to 90% compared
to the best case. For the transmit direction, cache
partitioning results in a reduction of the overhead
from 78% to 26%.

1 General

This paper leads together two, so far independent
lines of research, namely cache partitioning for real-
time systems and real-time networks. Both are re-
lated to worst case analysis of system components,
but have never been looked at in combination.

In real-time systems, admission of new tasks or
connections depends on their worst case resource
requirements, e.g. on their worst case execution
time.

In architectures with caches, a significant point
to look at for the analysis of real worst-case execu-
tion times is the cost for memory accesses. A well
studied approach for bounding the worst case is
cache partitioning (e.g. [LHH97, Mue95, Wol93]),
a technique to partition the cache among applica-
tions and thus to isolate applications with respect
to their cache usage. In [LHH97], the authors pro-
vide measurements for simple applications such as
a matrix multiplication and digital filters which
were highly tuned to make optimal use of caches

and hence to suffer as much as possible from cache
misses. However, the influence on complex real ap-
plications and applications which are not tuned for
optimal cache usage was not examined and left to
future experiments.

In [BH98], design, implementation and evalua-
tion of an ATM-based network stack is described,
that provides quality-of-service (QoS) -guarantees
to applications even in the end systems, which
are otherwise oftenly neglected. This is achieved
by reservation, accounting and policing on a per-
connection basis. Worst case execution times of
the operations in the network stack were measured.
Reservation is based on these execution times, on
the buffer requirements and on the bandwidth re-
quested.

The requirement for policing of non-conforming
connections places a heavy worst case load on end
systems, especially in the receive direction. How-
ever, the authors did mention, but not analyse the
influence of caches; hence the effect of caches on
worst case execution times of the network stack is
unknown.

In this paper, we apply cache partitioning tech-
niques as described on [LHH97] to analyse the effect
of caches on the network stack described in [BH98].
This contributes to a better understanding of cache
influences on more complex components than filter
and matrix multipliers, and it contributes to a bet-
ter understanding of real worst case resource con-
sumption in a network stack.

The remainder of the paper is organized as fol-
lows: In Section 2 the technique of cache partition-
ing and the network stack are described. Section 3

1

introduces the environment used for our measure-
ments and describes the applications forming the
system. The cache flooding algorithm to achieve
worst case execution times on further memory ac-
cesses is introduced here. In Section 4 the results
obtained from measurements are presented and dis-
cussed. Finally, some conclusions are presented.

2 Background

This section introduces the topics we relate to in
this paper in more detail.

2.1 Cache Partitioning

Ideal cache partitioning limits the cache access pat-
tern of one application to the cache partitions the
application is mapped to. No influencing of other
applications caused by cache interferences occurs.
As a result, memory access times will mainly be
determined by the application itself.

The cache partitioning technique described in
[LHH97] uses the virtual to physical address trans-
lation of modern computer architectures to parti-
tion physically-tagged caches. Its major advantage
compared to other cache partitioning techniques
is the transparency to applications not relying on
the physical addresses of a virtual memory address.
The technique is limited to a minimum cache size
given by the multiple of the physical page size and
the associativity of the cache. In a 2-level cache
hierarchy this typically restricts this technique to
partitioning the L2 cache. The L1 is shared by all
applications, so that we expect measurable differ-
ences between the best case and the the worst case
with cache partitioning and flooding the cache by
parallel applications. Other sources for additional
overhead not influenced by cache partitioning in-
clude misses at the translation look-aside buffer
(TLB). They are discussed in detail in [LHH97].

2.2 Network Stack

The network stack we have used is part of the
Dresden Realtime Operating System (DROPS,
[HBB+98]). Using a modified socket interface,
ATM adaption layer 5 (AAL 5) is supported. It
consists of 2 servers, each running in its own ad-
dress space. The first server is the driver for the

ATM network card, the second server is responsi-
ble for QoS reservation and enforcement. Commu-
nication between the servers and the client appli-
cations is done by the L4 inter-process communica-
tion mechanism (IPC).

The ATM driver uses a synchronous interface in
transmit direction, thus a send function returns af-
ter the data of a AAL5 protocol data unit (PDU)
is transfered into the internal buffers of the ATM
card. So the application buffers can be reused im-
mediately after returning from the send request. In
the receive path, the driver operates in interrupt
driven mode. The ATM card copies the data into
communication buffers in main memory and sends
one interrupt per copied AAL5 PDU to the proces-
sor. The driver copies the data to its client to free
these communication buffers.

The QoS server is the only client of the ATM
driver. Both run multithreaded, so receive and
transmit can occur simultaneously. A transmit op-
eration from a client results in sending a message
to the QoS server. Then the server checks the ac-
count of the client and sends a transmit-request to
the ATM driver. The driver signals the address,
length and other information to the network inter-
face and waits for completion. Because of the syn-
chronous interface, the data need not to be copied
inside main memory, resulting in a zero-copy archi-
tecture. At the receive path, data is copied once in
the ATM driver, and a second time inside the QoS
server. After checking the receive-account of the
associated client the QoS server signals the recep-
tion the the client. For data transfer between QoS
server and client a shared memory region is used.
To sum it up, at the receive path the data is copied
twice, at the transmit path we have a zero-copy
architecture.

3 Measurement Setup

In this section we introduce the concrete hardware
and software architecture and describe the compo-
nents used for the measurements.

3.1 Structural Setup

The environment used for our experiments is based
on the L4 µ-kernel [Lie95]. It supports multiple
address spaces and allows physical memory to be

2

driver
ATM-

QoS
component

Cache
flooder

test application
controlling

L4 microkernel

Pager supporting cache partitioning

Network
stack

Figure 1: The components of the system

managed by user tasks. Based on that, a user-level
pager was written supporting cache partitioning for
the applications.

The applications running on the system are the
pager, the two servers of the network stack, a test
application and a cache flooder, see Figure 1.

The cache flooder is responsible for achieving the
worst case memory cache situation, i.e. the execu-
tion time of further memory accesses is maximized.
The algorithm is described in detail in Section 3.2.
It runs in its own address space which allows to be
restricted by cache partitioning as needed by the
experiments. The flooding can be triggered at any
time by explicit request.

The test application controls the experiments
and measures the time. To obtain the effect of
cache partitioning to worst case execution times of
the network stack, data packets were send through
the stack in both directions. Interruptions of oper-
ations at stack are suppressed, their influence is
derived based on the measurement results later.
Four measurements were made for each direction,
with cache flooding and without cache flooding and
with cache partitioning enabled and disabled, in
any combination. When cache partitioning was en-
abled, it was ensured that each component had its
own cache colors respective its own L2 cachelines.
As discussed in Section 3.2.2, the cache flooder re-
served an additional cache partition, independent if

the applications share the remaining cache or not.
Cache was flooded differently for transmit and

receive. When cache flooding was used in transmit
direction, the flooder was triggered immediately be-
fore the send operation. The time measured for
transmit direction includes the operations at client
for sending the transmit-request to the QoS server,
the actions taken in the QoS Server and the ATM
driver, the time for sending the data to the ATM
card and all the signalling back to the client.

The ATM network interface uses internal buffer-
ing on the network card. Due to interleaving ef-
fects this results in shorter transmit times for small
PDUs, which must be considered in the QoS com-
ponent. To eliminate the delays caused by occupied
buffers, we insert gaps between the send operations.

The receive operation consists of two separate
operations in worst case. The first operation cov-
ers sending a receive-request to the QoS server and
all preparations for the next incoming PDU. Then
the network stack is waiting for the interrupt (IRQ)
signalling the received PDU at the ATM card. The
second operation covers the action taken in reac-
tion to the incoming IRQ. In the ATM driver the
PDU is pushed to the QoS server, the QoS server
does several operations and signals the PDU to the
application. When cache flooding was used on re-
ceive direction, the flooder was triggered twice per
receive request. The cache was flooded once be-
fore the receive-request and again after all prepa-
rations for the next incoming PDU were done. The
time measured for receive direction includes the ac-
tions taken in the the client for sending the receive-
request, the actions taken in the QoS Server and
the ATM driver until the wait for the IRQ. The
measured time also includes the actions taken in
reaction to the incoming IRQ, signalling the PDU
acceptance to the ATM card, copying the data to
the QoS server and copying the data from the QoS
server to the client.

3.2 Flooding the Cache

In this section we describe the cache flooder used
for achieving worst case execution times in our ex-
periments. We introduce the worst case situation
for memory accesses and present algorithms for
achieving this situation on different cache architec-
tures.

Due to the dependency of memory access times

3

Memory
L2

L1
[q]

[r]

[p]

p

q

r

s

Figure 2: Worst-Case scenario for memory access to
s. Arrows denote the mapping relations from memory
to L2 and from L2 to L1. Bold entries denote modified
data.

on the underlying architecture, we need to de-
scribe our assumptions on the system. We assume
a 2-level memory cache architecture as common
on modern processors. The caches are tagged by
physical addresses and support a write back strat-
egy. For memory write accesses from the proces-
sor, write allocation is used. No write allocation
is used in L2 when when writing back a modified
line from L1, if this would require to write back a
line from L2 first. Caches are set-associative and
use a strict LRU cacheline substitution mechanism,
n-way means a cache with associativity n. A 1-way
cache is called direct mapped. Further we assume
L2 to be larger than L1; the concrete limit, where
common architectures are within, is derived in Sec-
tion 3.2.2. When showing configurations of caches
with multiple associativity, the least recently used
element will be written to the left and the last ac-
cessed element to the right. At the next access to
a new element, the leftmost will be purged.

The granularity of reading and writing data in
caches is a cacheline. Therefore we always use
cacheline numbers as addresses, the bits determin-
ing a byte inside a cacheline are neglected. The
same applies for memory addresses. With [x] we
denote the contents of a cache element belonging
to the (reduced) memory address x.

3.2.1 Worst-case on Memory access

The worst case on a memory access corresponds an
access to memory address s in Figure 2. [s] can
neither be found in L1 nor in L2, hence it must be
loaded into both first. The L2-line s is mapped to
contains modified line r. The L1-line s is mapped
to contains modified line p. To store line s in L1,
a write back of p must be performed to free the
cache entry. The L2-line p is is mapped to con-
tains another modified line, q. This results in a
write-through of line p to the main memory. A
write-back must be performed on the L2-line con-
taining r too, because the entry contains a modified
line. Then, the line containing s can be loaded into
L2, L1 and the processor. To sum it up, the one
memory reference results in 2 write accesses and 1
read accesses to main memory. We refer to this as
double purge case. With double purge configura-
tion we denote the cache configuration leading to
the double purge case at the next memory access.

3.2.2 Achieving the Worst Case

This section derives algorithms to achieve the dou-
ble purge configuration described in the previous
section. We look at different cache structures and
construct the double purge configuration for each.

Construction of the double purge configuration
requires that the inclusion property [BW88] is vi-
olated, i.e. L1 contains cachelines that are not
in L2. Whether or not the inclusion property is
guaranteed, is determined by the cacheline substi-
tution algorithm [BW88, WBL89]. The LRU al-
gorithm does not ensure the inclusion property, so
the double purge configuration can be constructed.
How this can be achieved depends on the hardware
structure of the caches, to be precise, on their as-
sociativity.

Because of the cache hierarchy, every line being
loaded into L1 is also loaded into L2 (and may be
substituted later). As a result, the double-purge
case requires at least a 2-way L1. Otherwise all
lines in L1 also reside in L2.

Prior to discussing the algorithms for flooding the
cache, we point out some predicates and introduce
additional notations. A 2n-way cache of size 2m has
an address width of i = m−n bits. To index an el-
ement in this cache, only the least significant i bits
are used. With a reduced memory address width

4

step access effect comments
1 wrt A0.2.0 L1[0] := [A0.2.0] load the line the double purge case will be

achieved for

2 wrt A0.0.0 L1[0] := [A0.2.0], [A0.0.0] load line 0 into L1 and L2

3 wrt A1.0.0 L2[2.0] := L1[0]:[A0.2.0] purge [A0.2.0] from L1 to L2
L1[0] := [A0.0.0], [A1.0.0]

4 wrt A0.1.0 L2[0.0] := L1[0]:[A0.0.0] L2[0.0] is filled with modified line, disjunct to L1
L1[0] := [A1.0.0], [A0.1.0]

Table 1: Access pattern for achieving the double purge configuration on a direct mapped L2 for addresses
Ax.2.0, x>0.

zyx
a bitsb-a bitsw-b bits

Index in L1

Index in L2

Figure 3: Splitting the address into cache representa-
tives

L1 L2

[A0.2.0]

Memory
A0.0.0

A0.2.0

A1.0.0

A0.0.1[A0.0.0]
[A0.0.1]

A[0.2.0]
[A0.0.1]
[A1.0.0] [A2.0.0]

L1[0]=[A0.0.0], [A0.2.0]

L1[1]=[A0.0.1],-
L2[2.0]=[A0.2.0],-

L2[0.0]=[A1.0.0],[A2.0.0]

L2[0.1]=[A0.0.1],-

Figure 4: Illustration of notations and mappings from
memory to L2 and L1. Unknown/empty elements of
caches are denoted with ‘-’ in the entry-lists.

of w bits, 2w−i elements of memory are mapped to
every element in the cache. In a 2-level cache hier-
archy with an L1 address width a and an L2 address
width b, 2b−a elements of L2 are mapped to every
element in L1. Because we use this to purge spe-
cific lines from L1 and L2, we assume L2 to be as
least a ∗ b times bigger than L1. This is true for
almost all architectures. With Ax.y.z we denote a
memory address with z holding the least significant
a bits of the address, y holding the next b bits and
x holding the most significant w−b bits. Addresses
with identical values for z are mapped to the same
L1 element. Analogously, addresses with identical

A0.0.0

A0.1.0

A0.2.0

A1.0.0

L2 Memory

L1
[A1.0.0] [A0.1.0]

[A0.0.0]

A[0.1.0]

[A0.2.0]

Figure 5: Worst case on a 2-way L1 and a 1-way L2:
access to addresses Ax.2.0, x>0. Bold entries denote
modified lines.

values for y and identical values for z are mapped to
the same L2 element. So x specifies which represen-
tative of the memory-L2 mapping will be addressed
in L2, and y specifies the representative of the L2-
L1 mapping in L1. We denote the list of entries
at index z in L1 with L1[z]. Its length is a, the
associativity of L1. With L2[y.z] we denote the list
of entries at index y.z = y ∗ 2a + z in L2, having a
length of b. See Figure 4 for an illustration of terms
and addresses.

Direct Mapped L2

We construct the worst case configuration for a
2-way L1 cache and a direct mapped L2 cache.
Firstly, the double purge configuration is achieved
for a single L2-line and the corresponding memory
entries. See Table 1 for the access patterns and
Figure 5 for the result.

Writing in the first step to lines A0.y.0 with y in
[2..2b−a)1 brings all L2-addresses of these lines into
worst case state. To achieve the double purge case

1’[’ denotes including, ’)’ excluding the given bound.

5

step access effect comments
1 wrt A0.2.0 L1[0] := [A0.2.0], - load the line the double purge configuration

will be achieved for

2 wrt A1.2.0 L1[0] := [A0.2.0], [A1.2.0] load another line with the same L2 address

3 wrt A0.0.0 L2[2.0] := L1[0]:[A0.2.0], - purge [A0.2.0] from L1 to L2
L1[0] := [A1.2.0], [A0.0.0] load line 0 into L1
L2[0.0] := [A0.0.0], - and L2

4 wrt A1.0.0 L2[2.0] := [A0.2.0], L1[0]:[A1.2.0] purge [A1.2.0] from L1 to L2
L2[2.0] contains two modified lines

L1[0] := [A0.0.0], [A1.0.0] load another line into L1
L2[0.0] := [A0.0.0], [A1.0.0] the line is also loaded into L2[0.0]

5 wrt A0.0.0 L1[0] := [A1.0.0], [A0.0.0] make [A0.0.0] the least recently used element
in L1, but not in L2

6 wrt A2.0.0 L2[0.0] := [A0.0.0], L1[0]:[A1.0.0] purge [A1.0.0] from L1 to L2
L1[0] := [A0.0.0], [A2.0.0] load another line into L1 and L2.
L2[0.0] := [A1.0.0], [A2.0.0] This purges [A0.0.0] from L2, inclusion

property is violated.

7 wrt A0.0.0 L1[0] := [A2.0.0], [A0.0.0] make [A0.0.0] the least recently used element
in L1, but not in L2

8 wrt A0.1.0 L2[0.0] := [A1.0.0], L1[0]:[A2.0.0] purge [A2.0.0] from L1 to L2
L1[0] := [A0.0.0], [A0.1.0] load another line into L1 and L2
L2[1.0] := [A0.1.0], -

Table 2: Access pattern for achieving worst case situation on a 2-way L2 for addresses Ax.2.0, x>1.

for almost all memory accesses, the whole flooding
operation must be repeated for all L1-lines, i.e. the
least significant bits set to 1, 2 . . . 2a − 1. The
double purge case will occur for all addresses Ax.y.z
with y>1.

2-way L2 Cache

Not considering L1, the following algorithm floods
all L2-lines with address L2[0.0]:

for(x = 0; x < ass(L2); x++)
wrt(Ax.0.0);

For flooding L1 with lines not contained in L2,
we select lines A0.0.z, to stay in L1 and lines A1.0.z
and A2.0.z to stay in L2. We touch the lines to stay
in L2, and in between we touch the lines that will
stay in L1. Given an n-way L1, the LRU algorithm
executed by the caches allows pinning of n-1 modi-
fied lines in L1 this way. The algorithm in Table 2
constructs the worst double purge configuration for

L1 L2

[A0.1.0]

[A0.0.0] A[0.1.0] [A1.0.0] [A2.0.0]

[A0.2.0] A[1.2.0]

Memory
A0.0.0

A0.1.0

A0.2.0

A1.0.0

Figure 6: Worst case on a 2-way L1 and a 2-way L2:
access to addresses Ax.2.0, x>1. Bold entries denote
modified lines.

selected lines of a 2-way L1 and a 2-way L2. The
resulting configuration is shown in Figure 6.

Accessing any of the lines Ax.2.0, x>1 results in
writing back the modified line A0.0.0 from L1 to
memory and writing back the modified line A0.2.0
from L2 to memory (see Figure 6). To enhance the
algorithm to almost all addresses, execute

6

for(y = 2; y < 2b−a; y++)
for(z = 0; z < 2a; z++)

{ wrt(A0.y.z); wrt(A1.y.z); }
for(z = 0; z < 2a; z++)
{ wrt(A0.0.z); wrt(A1.0.z);
wrt(A0.0.z); wrt(A2.0.z);
wrt(A0.0.z); wrt(A0.1.z); }

This achieves the worst-case situation for ad-
dresses Ax.y.z with x>1 and y>1.

Access to the addresses Ax.1.z do not meet the
double purge case criterion, even not to addresses
A0.y.z and A1.y.z. The latter is clear, because these
lines already reside in L2 due to the first flood-
ing loop. Access to the lines Ax.1.z would not re-
quire to write back a L2-line, because one of the
L2-entries contains an invalid line, which can be
purged. The corresponding modified entry resides
in L1. In Figure 6 this is line [A0.1.0]. As a re-
sult, access to the these lines must be circumvented
when measuring worst-case execution times of ap-
plications. This can be achieved by cache parti-
tioning: one partition of L2 will be reserved for the
cache flooder to hold the addresses Ax.1.z. The
second demand, not to share the addresses A0.y.z
and A1.y.z with other applications is done by usual
memory management.

General Case

To generalize the cache flooding algorithm, we
assume an n1-way L1 and a n2-way L2, n1 > 1. In
the first step, we touch most of the L2 by executing

for(x = 0; x < n2; x++)
for(y = 2; y < 2b−a; y++)

for(z = 0; z < 2a; z++)
wrt(Ax.y.z);

In the second step we execute

for(z = 0; z < 2a; z++)
{
for(x = 0; x < n2; x++)

{
for(j = 0; j < n1 − 1; j++) wrt(Aj.0.z);
wrt(A(x+n1 − 1).0.z);
}

for(j = 0; j < n1 − 1; j++) wrt(Aj.0.z);
wrt(A0.1.z);
}

With these access patterns we achieve the worst-
case situation for addresses Ax.y.z with x>1 and
y>1.

Again, cache partitioning is needed to systemati-
cally achieve the worst case in memory access times
with general applications. Also, the memory used
for flooding must not be shared with other appli-
cations to get the worst case.

3.3 Hardware Architecture

The architecture we used for our experiments was
an Intel Pentium-II-based PC. The Pentium-II dis-
poses of a 16KB 4-way L1 data cache (D-cache), a
16KB 4-way L1 instruction cache (I-cache) and a
512KB 4-way unified L2 cache. Both the D-Cache
and the L2 cache are write back caches and support
write allocation for write-access from processor to
main memory.

Because the I-cache does not support write-back,
the worst case for instructions is not to find the
corresponding code in the L1. For the L2-part, the
worst case corresponds to a modified line which has
to be written back first. This can easily be achieved
by flooding L1 I-cache by executing a sufficiently
huge chunk of code and using the cache flooding
technique described above for flooding the whole
L2 cache and the L1 D-cache.

The general cache flooding algorithm described
in Section 3.2.2 was adapted and used by the cache
flooder application.

4 Measurement Results

When cache flooding was not used, nearly no differ-
ences were measured between the partitioned and
the unpartitioned cases. So we do not distinguish
between these two cases when discussing the re-
sults.

4.1 Transmit Path

Figure 7 shows the number of CPU cycles needed
for the transmit path of AAL5-PDUs of differ-
ent sizes. The lower graph corresponds the un-
flooded case, i.e., only send operations with suffi-
cient breaks in between are executed. Because the
cache is not modified by other instances, this is as-
sumed to be the best case. The upper graph shows

7

0

20000

40000

60000

80000

100000

120000

0 1000 2000 3000 4000 5000 6000 7000 8000

C
yc

le
s

fo
r

se
nd

 o
pe

ra
tio

n

PDU Size

Send Path

Uncolored
Colored

Unflooded

Figure 7: Cycles needed for sending AAL5-PDUs of
different sizes

the cycles needed when all applications share the
whole cache and the cache flooder is able to flood
the cache of all these applications. Assuming the
network stack is uninterruptible, the upper graph
corresponds to the WCET. The graph in the mid-
dle shows the colored case, where each component
has its own cache partition. The cache flooder was
limited to its own part of the L2 cache, but still
influences the L1 cache and the TLB, as mentioned
in Section 2.1. For the smallest possible PDU size,
cache partitioning reduces the maximum overhead
caused by cache misses in the send path from 145%
to 43% compared to the best case. For PDU sizes of
4KB the maximum overhead is reduced from 40%
to 12%. For PDU sizes equal to the typical max-
imum transfer unit (MTU) in Ethernet networks
of 1500 Bytes, the WCET is reduced from circa
51000 cycles to 36000 cycles by cache partitioning.
This tightens the range from best case to worst case
from 78% to 26%, which results in a more accurate
resource reservation.

As already stated, the ATM network interface
uses internal send buffers. They are responsible for
the bend at PDU sizes of about 6KB.

4.2 Receive Path

Figure 8 shows the number of CPU cycles needed
for the receive path of AAL5-PDUs of different
sizes. The execution time is calculated as the sum
of the both parts of the measurements. The upper
graph corresponds the uncolored case, the cache

0

50000

100000

150000

200000

250000

300000

0 5000 10000 15000 20000 25000 30000 35000

C
yc

le
s

fo
r

se
nd

 o
pe

ra
tio

n

PDU Size

Receive Path

Uncolored
Colored

Without flooding

Figure 8: Cycles needed for receiving AAL5-PDUs of
different sizes

was flooded twice per receive operation. This is
assumed to be the WCET. The lower graph shows
the results from measurements without flooding the
cache. We assume it to correspond the best case in
the receive path. The graph in the middle shows
the results obtained from flooding in combination
with cache partitioning. This corresponds to the
worst case when cache partitioning is used. The
cache flooder was limited to its own part of the
L2 cache, but still influences the L1 cache and the
TLB. The effect of cache partitioning for 1-byte
PDUs is a reduction of the overhead caused by
cache misses from 360% to 92% compared to the
best case. For a PDU size of 4KB the overhead is
reduced from 260% to 86%. For PDU sizes equal
to the typical MTU in Ethernet networks of 1500
Bytes, the WCET is reduced from circa 60700 cy-
cles to 28000 cycles by cache partitioning. This
tightens the range from best case to worst case from
310% to 90%.

4.3 Discussion of the Results

The receive path profits more from cache partition-
ing than the send path. One reason for this is
the double copying of every data which is received,
while the send path requires no copy. Hence, the
influence of cache misses in the send path are in-
dependent of the PDU size, conflicts occur only
at the control path. For receive direction, cache
misses also occur for the data. The consequence is
a dependency of the cache hit rate from the PDU

8

0

50000

100000

150000

200000

250000

300000

0 5000 10000 15000 20000 25000 30000 35000

C
yc

le
s

fo
r

re
ce

iv
e

op
er

at
io

n

PDU Size

Receive Path
Worst case

Wrong assumption: 1-way L1
Without flodding

Figure 9: Missing the WCET by wrong assumption of
associativity.

size. Up to a certain limit, based on the cache size,
this dependency is linear. Another reason for the
stronger influence to the receive path is the two-
step mode of operation. So the cache can be flooded
twice per receive procedure. While cache partition-
ing reduces the overhead in transmit path by 15,000
cycles, the overhead in the receive path is reduced
by ca. 30,000 cycles for the smallest PDU size.

Generally, exact measurements of WCET are a
nontrivial task in complex systems like the x86 PC
architecture. The construction of the cache flooder
emphasized that comprehensive knowledge of the
cache architecture is needed. If the wrong associa-
tivity or the wrong cache sizes are assumed, the
worst case scenario is not achieved. For example,
flooding the cache hierarchy by just writing into
a large array is appropriate for direct mapped L1
caches. With the 4-way L1 cache, this leads to
execution times which are 11,000 cycles below the
WCET measured for transmit direction of the net-
work stack. For receive direction, the difference is
about 28,000 cycles. For PDU sizes of 1500, this
is 50% of the WCET. Figure 9 shows the execu-
tion times for correctly flooded cache, the execution
times when simply writing into the cache, and the
unflooded case. The applications share the cache
in all cases.

Especially the receive path makes clear that sche-
duling should respect the influence of cache accesses
to execution times. While a large amount of time
can be bound with cache partitioning, the influence
of the L1 cache remains. One solution could be to

schedule real-time components as non-interruptible
parts. The sum of worst-case execution times of
these parts is subject to reservation. The problem
is that IRQ acceptance would be delayed. When
dealing with hardware which handles only single
transactions and an interrupt signals the end of
each transaction, delaying IRQ acceptance will slow
down the system enormously. A better solution for
scheduling IRQs is to ascertain the maximum influ-
ence of the IRQ to other resources, e.g., to caches.
We could assume an IRQ to bring the cache in the
worst case state regarding the network stack. The
amount of time the network stack execution is ex-
tended by unfavorable cache state must be reserved
additionally for every IRQ occurrence. Essential to
this reservation is the knowledge of the hardware
driver about the IRQ behaviour of its hardware.

5 Conclusion

This paper presented algorithms to achieve worst
case situations for subsequent memory accesses.

Based on that, worst case execution times of op-
erations of the network stack were determined. It
was shown, that cache partitioning significantly im-
proves the worst case execution times of the stack,
which results in a more appropriate resource reser-
vation and a better system utilization. The max-
imum overhead caused by cache misses is reduced
from 310% to 90% for receiving PDUs of typical
sizes and from 78% to 26% for the transmit direc-
tion.

It was also shown, that achieving the worst case
requires intense knowledge of the underlying sys-
tem. Results obtained from wrong assumptions
to cache architecture or from wrong cache flood-
ing techniques differ from the real worst case by up
to 50%.

Acknowledgements

We want to tank Jochen Liedtke for discussion
about the cache hierarchy and pointing out the real
worst cases with set-associative L1 caches. We also
thank Sebastian Schönberg for proofreading and his
valuable comments.

9

References

[BH98] Martin Borriss and Hermann Härtig.
Design and implementation of a real-
time ATM-based protocol server. In
19th IEEE Real-Time Systems Sympo-
sium (RTSS), Madrid, Spain, December
1998.

[BW88] J. L. Baer and W. H. Wang. On the in-
clusion properties for multi level cache
hierarchies. In 15th Annual Interna-
tional Symposium on Computer Archi-
tecture (ISCA), pages 73–80, Honolulu,
HA, June 1988.

[HBB+98] H. Härtig, R. Baumgartl, M. Bor-
riss, Cl.-J. Hamann, M. Hohmuth,
F. Mehnert, L. Reuther, S. Schönberg,
and J. Wolter. DROPS: OS sup-
port for distributed multimedia applica-
tions. In Proceedings of the Eighth ACM
SIGOPS European Workshop, Sintra,
Portugal, September 1998.

[LHH97] J. Liedtke, H. Härtig, and M. Hohmuth.
OS-controlled cache predictability for
real-time systems. In Third IEEE Real-
time Technology and Applications Sym-
posium (RTAS), pages 213–223, Mon-
treal, Canada, June 1997.

[Lie95] J. Liedtke. On µ-kernel construction.
In 15th ACM Symposium on Operating
System Principles (SOSP), pages 237–
250, Copper Mountain Resort, CO, De-
cember 1995.

[Mue95] F. Mueller. Compiler support for
software-based cache partitioning. In
ACM SIGPLAN Workshop on Lan-
guages, Compilers and Tools for Real-
Time Systems, La Jolla, CA, June 1995.

[WBL89] W. H. Wang, J. L. Baer, and
H. Levy. Organization and performance
of a two-level virtual-real cache hier-
archy. In 16th Annual International
Symposium on Computer Architecture
(ISCA), pages 140–148, Jerusalem, May
1989.

[Wol93] A. Wolfe. Software-based cache parti-
tioning for real-time applications. In
Third International Workshop on Re-
sponsive Computer Systems, September
1993.

10

