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Abstract

We presentnforceable component-based realtime contracts, the first exten-
sion of component-based software engineering technology that comprehensively
supports adaptive realtime systems from specification all the way to the running
system.

To provide this support, we have extended component-based interface defin-
ition languages (IDLs) and component representations in repositories to express
realtime requirements for components. The final software, which is assembled
from the components, is then executed on a realtime operating system (RTOS)
with the help of a component runtime system. RTOS resource managers and the
IDL-extensions are based on the same mathematical foundation. Thus, the com-
ponent runtime system can use information expressed in a component-oriented
manner in the extended IDL to derive parameters for the task-based admission
and scheduling in the RTOS. Once basic realtime properties can thus be guaran-
teed, runtime support can be extended to more elaborate schemes that also support
adaptive applications0ntainer-managed quality assurance).

We claim that this study convincingly demonstrates how component-based
software engineering can be extended to build systems with non-functional re-
quirements.

1 Introduction

The complexity of modern software systems is continuously increasing. For quite some
time already, component-based software engineering (CBSE) (Mcllroy [1968; Szypers-
ki 2002) has been considered to be a good way to cope with this increasing complexity
by dividing software systems into manageable parts which can be developed largely
independently and reused many times in different application contexts. However, so



far CBSE has only provided a means to cope withfilnetional complexity of soft-

ware systems. Component-based support for non-functional properties of such systems
is still very much lacking. For example, realtime properties such as response time or
jitter are typically guaranteed by realtime operating system (RTOS) schedulers, which
use a task-based terminology and mindset not directly usable for a component-based
application. This paper presentsforceable component-based realtime contracts, a
detailed approach extending specification languages, repositories and the runtime en-
vironment to support component-based applications that have to meet realtime require-
ments. Continuous support of realtime properties from specification to execution is
our main contribution in this paper. We have described the individual elements of our
approach to a large extent in other publications (Aigner et al.[200Be(22004; Gbe

et al. 2004| @bel et al. 2004; Hamann et al. 2001attg et al. 1998 Bttger and
Zschaler 2003; Bitger and Zschaler 2004). In this paper we focus on their combi-
nation and interaction, which lead to continuous support of realtime properties from
system inception to system runtime. To the best of our knowledge, this is the first
comprehensive solution providing support for component-based systems from design
to execution.

In order to raise support for realtime properties to the level of component-based
applications, various sub-problems need to be solved, and the provided solutions must
be designed so as to interact closely. These issues and our respective solutions will
be discussed in this paper, but we first will outline the requirements we derived from
the problem domain. The following list is meant to provide guidance regarding the
way the individual elements of our approach fit together and complement each other in
fulfilling these requirements:

1. We require a component-oriented development process, which is tailored both
for the specific issues related to CBSE and the explicit consideration of non-
functional properties of the system to be developed.

2. During development of a component-based application following our process,
application developers need to specify non-functional properties of their ap-
plication. They then need to select components based on their non-functional
properties such that the non-functional properties of the components contribute
appropriately and positively to the required non-functional properties of the ap-
plication as a whole. Component developers providing component implemen-
tations and wishing to sell them to application developers need to describe the
non-functional properties of their component implementations. We thus need a
component-oriented specification technique that allows the expression of non-
functional properties of individual components or applications as a whole.

3. We require an RTOS as the technological basis for guaranteeing realtime proper-
ties. The RTOS needs an underlying mathematical model upon which the deriva-
tion of realtime properties of applications can be based.

4. The component-oriented specification of non-functional properties must be map-
ped into the task-based parameters expected by the RTOS’s schedulers. Compo-
nent runtime environments, also called containers, can provide an implementa-
tion of such a mapping. The mapping is simplified by basing the component-
oriented specification language on the same mathematical model as the RTOS
schedulers.



The container can use arbitrarily complex algorithms for mapping component re-
source requirements to RTOS resource reservations—for example by placing buffers
between components or instantiating multiple copies of the same component to im-
prove throughput. What decisions the container takes is hidden from the component
developer and the client of the system, giving service providers more control and flex-
ibility when managing the non-functional properties of the services they provide. We
refer to this agontainer-managed quality assurance. Another example of this is that the
container can adapt non-functional properties of components and applications already
running, if resource availability or client requirements change.

The remainder of this paper is structured as follows: Se¢fjon 2 presents a small
video-player application, which we are going to use as an example throughout the
paper. We then begin by reviewing briefly some core concepts of CBSE in[$ect. 3
as a basis for the discussion in the following sections. As we have indicated above,
it is useful to use the same mathematical foundation for both the component-based
specification technique and the RTOS schedulers. Therefore, we introduce our under-
lying mathematical foundation in Seff. 4. Sectign 5 then discusses the component-
oriented specification of non-functional properties. Additionally, this section outlines
a development process for component-based systems with support for non-functional
properties. The component runtime environment that realises the mapping from the
component-oriented specification to the task-oriented mindset of the RTOS is presented
in Sect[$. Sectioh]7 discusses advanced techniques of container-managed quality as-
surance, which support quality adaptation at runtime. The paper concludes with a
review of related work and an outlook.

2 An Example System

Multimedia applications are good examples for systems with realtime requirements.
We will therefore use a video player software as a running example in this paper. The
player should in particular be able to display fluid video (i.e., at least 25 frames per
second), accompanied by the corresponding audio samples.

The functionality of a video player can be divided naturally into the following five
parts (cf. Fig[ [}

1. A demultiplexer (dubbed demuxer in the figure), which analyses video file data
and provides separated video and audio streams.

2. An audio decoder, which transforms compressed audio frames into suitable data
for a sound card.

3. A video decoder, which transforms encoded video frames into the display for-
mat. Video is processed in two steps: First, the encoded data is decoded, and then
a set of post-processing filters are applied, removing compression and motion
artefacts, adapting contrast and brightness, or even watermarking the decoded
frames.

1In this figure, we already use parts of an extension of UML we have developed to model component-
based systems and their non-functional properties. Some more details of the notation will be explained in
Sect[3P; for now just consider the white boxes to indicate components, the double lines connecting them to
represent stream-based communication, and the single lines to stand for request-response communication.
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Figure 1: Overview of the sample system

4. A synchronizer, which synchronises the audio and video output. The synchro-
nizer delivers the video and audio streams to appropriate rendering devices (dis-
play and sound card, respectively).

5. Users control playback viagaphical user interface (GUI), which sends com-
mands, such astart,  or stop, via the controller to the demultiplexer and
synchroniser in response to user actions.

If we consider the realisation of such a video player, some technical requirements
become obvious. We will focus on the two most prominent ones in this paper:

Firstly, to enable reuse of existing implementations of video and audio decoders,
we would like to structure our application into interacting, independently exchange-
able components. The five parts identified above are a natural starting point for such
a component structure. These components need to communicate in two ways: (i) they
exchange control information on a request-response basis, but (ii) they also exchange
streams of video and audio data. Streams are different from request—response commu-
nication, because they are packet-based and a direct response is not required.

Secondly, the video player has to guarantee the realtime properties of playback.
This requires reservation and scheduling of resources, in particular the CPU. The pro-
tocols supporting such reservations are platform-specific, and resource reservation can
be a complex issue in its own right. Thus, integrating resource reservation code into the
components themselves prevents reuse on different platforms, and additionally makes
component development even more complex. Therefore, we would like resource reser-
vation and realtime guarantees to be managed as much as possible by the runtime envi-
ronment. We refer to this a®ntainer-managed quality assurance. Of course, we need
to give some information about the realtime behaviour of the components, but, in order
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to separate this concern as much as possible from the core business logic, we want
this to be in a declarative form clearly separated from the component implementation.
Specifically, in our example, we need to know the distribution function of execution
times for each decoding, demultiplexing, or synchronisation step. From this informa-
tion, we want the runtime environment to derive a CPU allocation scheme, which uses
the resource as efficiently as possible, including potential overbooking. The system
will then not be able to give absolute guarantees for all cases. Therefore, it should
provide ways to adapt to missing resources dynamically, so that a certain quality level
can be maintained.

The following explains how we structure our runtime system, and how we declara-
tively describe the realtime behaviour of our application to support these requirements.
We will come back to the video player to give concrete examples of our technologies.

3 Component Concepts

Software components are seen as an important way to structure applications, helping
application developers cope with the complexity inherent in large systems. In this
section we give a short overview of the important concepts in this area.

3.1 Introduction to CBSE Concepts

The definition of acomponenimost widely accepted in the CBSE community is

“A software component is a unit of composition with contractually speci-
fied interfaces and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to composition by third
parties.” (Szyperski 2002)

Software components are elements of software that need to be composed with other
components to form an application. The different components in an application may be
developed by different component developers. The components can interact because
there exists a standardised component runtime environment offering a space to live in
to the components.

(Cheesman and Daniels 2001) introduce another important notion into the world of
CBSE, namely the idea @bmponent forms. They argue that the concept of a compo-
nent varies depending on the current step in the software project life cycle. Cheesman
and Daniels distinguish the following four major component forms (cf.[Fig. 2):



Component Specification The specification of the behaviour of a unit of software
without reference to implementation decisions. Cheesman and Daniels use com-
ponent interfaces and interface models to define component behaviour.

Component Implementation An actual implementation of a component specifica-
tion. There can be various implementations for the same component specification
as long as they exhibit the same externally observable behaviour.

Installed Component Component implementations are installed into a runtime envi-
ronment where they will be executed. Although Cheesman and Daniels do not
mention it, at this level it would be possible to further distinguish different con-
figurations of the same component implementation, even installed into the same
runtime environment.

Component Object Installed components are instantiated to create component ob-
jects, which are the entities actually handling any requests. The important thing
here is that component objects can have a runtime state, so that two component
objects of the same installed component can be distinguished by their respective
runtime state.

The view taken by Cheesman and Daniels is an extension of the definition given by
Szyperski. Szyperski’'s components are a mixture of the first three component forms
(i.e., component specification to installed component), exhibiting properties of each.
Szyperski explicitly states that components have no persistent state. Cheesman and
Daniels clarify this concept by introducing the Component Object form, which repre-
sents an instantiated component havimgrime state.

In this paper, we follow the definitions and concepts explained above, and add
consideration of non-functional properties from design to runtime. We associate non-
functional properties with component implementations. However, as will be seen, func-
tional specifications of applications are completely written at the level of component
specifications. The runtime environment then selects appropriate implementations to
instantiate based on the non-functional properties to be guaranteed. The next section
shows how our example fits into this terminology.

3.2 Reuvisiting the Example

In our example, we can identify five components: controller, demultiplexer, video de-
coder, audio decoder, and synchronizer. They have been composed as showj|in Fig. 1
to form an application which provides the service of rendering videos.

We will identify the various component forms using the video decoder as an exam-
ple. First, there is the video decoder component specification, which expresses that a
video decoder component has two streaming partepVideo anduncompVideo .

The former is a stream sink (indicated by-)—a port through which data packets
flow into the component—and the latter is a stream source (indicate-py-a port
through which data packets flow out of the component. The functionality of the video
decoder, also described in its component specification, is that it takes streams of com-
pressed video material in some form (MPEG4 in our case), and decodes it into a stream
of raw video data fit to be presented on screen.

There can be multiple implementations of such a specification. We consider two
implementations: the Verner video decoder (Rietzschel|2003), which supports adap-
tation of post-processing steps, and a standard MPEG 4 decoder without support for



such adaptation. These component implementations provide different realtime proper-
ties: Verner can consistently provide 25 frames per second of output, but it may drop
post-processing steps. The standard decoder will not drop post-processing steps, but
this means it may not achieve an output of 25 frames per second.

Providing these component implementations to a component container makes them
installed components. Some additional configuration settings happen in this step, the
most notable among them is the setting of a name under which the component can be
located in the component container’s name server. When a user wants to view a video,
the component container will select appropriate implementations from the installed
components available, instantiate them, and connect them according to the specification
of the application. The main distinction between an installed video decoder and an
instantiated video decoder is that the instantiated decoder processes a specific video
for a specific client. At any point in time, the instantiated decoder processes a specific
frame of the video, which may be different from the frame decoded by other instances
processing the same video for a different client.

4 The Mathematical Model: Schedulers for Tasks with
Mandatory and Optional Parts

In this section we discuss the mathematical model that forms the foundation of enforce-
able component-based realtime contracts. We first explain our task model, followed by
the presentation of a simple scheduling scheme for this task model.

4.1 The Task Model

The following concepts are based on the theoringirecise Computation (Chung, Liu,

and Lin 1990) applied to CPU scheduling. Given a suitable application or algorithm,
such as a video player, it is possible to divide work into a single mandatory part—
the decoding of a picture—and one or more optional parts—the post-processing of the
picture.

This is reflected in the task model we use in our system. We split resource demands
into two parts: a mandatory part and an optional part. The mandatory part must always
be completed by its deadline. Consequently, it must be scheduled according to its worst
case execution time. At least a certain requested percentage of the optional parts should
be completed before their respective deadlines. Our task nffbdemprises a set of
independent tasks:

T = {Ti,...,Tp},
where each task; is defined as follows:

T, = (Xi,Yi,wi,q,d;),
such that:
X, is arandom variable for the execution times per period of the mandatory part,
Y; is a random variable for the execution times per period of the optional part,

w; is the worst-case execution time of the mandatory part,
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Figure 3: Working principle of schedulers with mandatory and optional jobs for each
task

¢; is the quality of the optional part. Quality is defined as percentage of parts com-
pleted before the deadline.

d; is the relative deadline. For simplicity, we use deadlines which are equal to a task’s
period.

The use of distributions for execution times combined with splitting the work into
the two described types, allows us to achieve much higher resource utilization for (i)
systems with hardware components classically not suited for realtime tasks due to vary-
ing execution times (e.g. hard disks), and (ii) software problems with varying amounts
of work in each iteration—for example, video decoding. Based on this task rigdel
we describe one possible admission and scheduling model in the following.

4.2 Admission and Scheduling

Quality Rate-Monotonic Scheduling (QRMS) is a method to compute reservation times.
Information about QRMS has not been published so far, however, we have previ-
ously introduced the more complex Quality-Assuring Scheduling (QaS) (Hamann et al.
2001), a predecessor to QRMS, and applied it to disk request scheduling in (Reuther
and Pohlack 2003) and (Reuther 2005).

For QRMS we compute the reservation timdor the whole taskl’; as follows:

= min(r e RIP(X; +Y; <7) > q) (1)
ri = max(r;/,w;) @

In Equation 1 we determine a reservation for both, the mandatory and the optional
parts, such that the required qualityis met, by simply adding the distributions. With
Equatior{ 2 we ensure that there is enough reservation for the mandatory part by po-
tentially increasing the reservation to the worst case execution time of the mandatory
part.

Since mandatory parts do not usually run for their worst case execution time, we use
the distributions of both parts for the computation of the execution times. These times
are mapped to time slices with certain lengths and priorities for our CPU scheduler. An
example schedule for two tasks with mandatory and optional parts and corresponding
global priorities is depicted in Fi] 3.

The admission test for QRMS is relatively simple; the only requirement is that the
utilization summed up for all tasks in the system must be lessithan
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Figure 4: Distribution of video decoding times

4.3 Reuvisiting the Example

In this section we explain how the example system detailed in[Sect. 2 fits together with
our scheduling technology as described above.

An overview of the example application is given in Hi. 1. All component activi-
ties are realized as periodic and independent processes. The audio decoder component
fits easily into our task model. It continuously runs a loop, which fetches new pack-
ets from the demuxer component, decodes them, and finally delivers the resulting raw
samples to the synchronizer component. Computation time requirements for audio de-
coding (typically MPEG-1 Layer 3 or similar formats) are mediocre for current desktop
systems. Furthermore, computation time for decoding a single frame of a given data
format is nearly constant as frames have similar sizes. Thus, we modelled the audio
decoding part as a simple periodic process, with fixed period and deadline. All the
computation is done in the mandatory part. The distribution of the execution times for
this component mostly consists of a single sharp spike.

In contrast to audio frames, video frames vary in size and complexity. Decoding
video frames is, therefore, harder to accomplish in realtime systems than decoding
audio frames. As mentioned previously, we implemented frame decoding as mandatory
parts and post-processing as optional parts; that is, all frames are always decoded,
but some frames are not post-processed. Video decoding times fluctuate as shown
in Fig.[4, whereas simple post-processing algorithms run in approximately constant
time since they always have to process the same amount of data (one decoded frame).
Post-processing filters remove compression and motion artefacts, adapt contrast and
brightness, or even watermark decoded frames, and are typical for current video codecs
such as MPEG 4. Post-processing has a CPU-time demand in the range of the frame
decoding time itself.

Returning to the task model introduced in SEct] 4.1 our video player would consist
of four realtime task§3 to T, (demultiplexer, audio decoder, video decoder, synchro-
nizer), wherelz would describe the video decoder component. The distribution of a
typical execution timeX for the mandatory decoding step is shown in Fig. 4. The
distribution forY3; would be more narrow but in the same order of magnitude for the
times, as post-processing is more steady in CPU usage than decoding. The worst case
execution timesvs were around 10 ms on one of our machines. We used a qyality
of 95% for the optional parts. The relative deadline and period lesigthould be 40
ms for a video with 25 frames per second.

Psychologically, it is not desirable to have a flickering video where post-processing



is skipped occasionally. Instead, it is preferable to adjust the quality of the displayed
video slowly and in small steps. Therefore, we defined several setups of post-process-
ing filters, each setup differing in resource demand. Of course, it is only useful to
decrease image quality in a setup if the corresponding resource demand is decreased
as well. We call these setups post-processimgls. Currently, we use four different
levels, where level 0 mean® post-processing and level 3 meansery high quality
post-processing. In the running system, the current CPU demand is monitored. In
case of resource availability changes the video decoder is notified and it adapts post-
processing levels.

5 Specifying Enforceable Realtime Contracts of Com-
ponent-Based Software

After we have presented the mathematical foundations of our approach, we now explain
important design-time issues for component-based software with enforceable realtime
contracts. We discuss our method of specifying both the application and its realtime

contracts, and present an overview of a development process for such software. We
begin by explaining the specification of our sample system.

5.1 Revisiting the Example

In this section we explain the specification concepts for our example system. First, we
discuss how non-functional properties of a component implementation are specified,
using the Verner video decoder as an example. Afterwards, we show our method of
specifying the functional application structure; that is, how the components interact to
provide the application’s functionality.

On the non-functional side, the key characteristic we are interested in for the video
decoder is the frame rate that it will deliver. To this end, we first need to define what
we mean by frame rate. Listir@ 1 shows @@ (Extended Component Quality

quality .characteristic frame.rate (f: Flow) {
domain: numeric real [0..) framesper.second;

values: f.events.eventsinRangdg1000);

}

Listing 1: CQML™ definition of frame rate.

Modelling Language| (Bttger and Zschaler 2003)) specification defining the quality
characteristic (or measuremefitame _rate for a flowf of frames. The domain
clause tells us that frame rates are expressed as non-negative real numbers with a (in-
formatory only) unit of measurement of frames per second. vetheées clause tells

us that frame rate is defined, at any moment in time, as the number of events registered
for the flowf in the last 1000 milliseconds.

Actually, in order to interpret thealues clause, there are two things that one
needs to know: First, thealues clause is written in a language called the Ob-
ject Constraint Language (OCL) (Object Management Group 2003b) a textual sub-
language of the Unified Modelling Language (UML) which allows designers to add
first-order predicate logic constraints to UML models. OCL expressions are always
written with respect to some UML model—most importantly a static structure model

10
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Figure 5: Context model for frame rate definition

(e.g., a class diagram)—called thentext of the expression. Therefore, we need to
know, secondly, the static structure model forming the context ofdhees clause.
In ComL™, each characteristic is defined relative to a context model, which defines
the system elements relevant for the characteristic, as well as their interactions. This
context model also provides the context for trsdues clause. A representation of
the static structure of the context model for the definition of frame rate can be seen in
Fig.[3. There are also some definitions of the dynamic behaviour in the context model.
They state that, for each frame that is put into the flow, an event is placed in the associ-
ated event queue, marked with the time at which the frame was put into the flow. The
operatioreventsinRange (X) is defined to return the number of events in the last
x milliseconds.

So far, our specifications have been independent of a specific application. Now,
we begin to model our application. As a first step, we define (in Listing 2) a frame
rate of 25 frames per second or more to be good. And, last but not least, we spec-

quality good.rate (f: Flow) {
frame_rate (f) >= 25;

Listing 2: ComL™T definition of good frame rate.

ify that the Verner video decoder can provide such a frame rate. In order to apply
a characteristic to a concrete application model, we need to define a mapping from
the concrete modelling elements to the elements of the context model. We define that
video stream connections can be viewed as flows in the context model. Thus we can
apply good _rate to any video stream connection in our model. As explained in
Sect[2, Verner is implemented so that it can decode videos in two modes: one with
an additional post-processing step, and one without this step. In both cases, Verner
will output 25 frames per second, provided it received at least 25 frames per sec-
ond as input. However, its CPU demand differs for the two cases. Listing 3 gives
the corresponding @vL™. The resource demand is specified in two steps. First, a
model of the resource itself is specified, using characteristics to model attributes of
resource requests. This model is currently very platform-specific; that is, the struc-
ture of the model is shaped exactly as required by the resource management of the
target platform. For a CPU which can schedule tasks with one mandatory and one
optional part as described in Se@t. 4, the correspondipglC specification is given
in Listing[4. Based on these definitiordgcoder _good _cpu can then be defined
asin Listind . wheredecoder _mand.dist andvdecoder _opt _g3.dist ref-
erence tabular representations of the distribution functions of execution times for the
mandatory and the optional part, resp.

After having shown the non-functional part of the specification, we specify the
application structure of the example next. Our component model contains separate

11



profile decodingBehaviourfor VernerVideoDecoder{
profile goodwork {
provides good.rate (uncompressedVideo);
uses good-rate (compressedVideo);
resources decodergood.cpu;

}
profile ok-work {
provides good.rate (uncompressedVideo);

uses good.rate (compressedVideo);
resources decoderok_cpu;

}
Listing 3: CoML™ profile for the Verner video decoder component implementation.

resource cpu {
quality _.characteristic task.quality {
domain: numeric [0..100] percent;

quality .characteristic executiontime {
domain: distribution ;

quality _.characteristic task {
domain: tuple {
task.quality ,
executiontime

quality .characteristic mandatory : task {
invariant: task.quality = 100;
}

quality _.characteristic optional : task {}
quality _.characteristic period {
domain: numeric microseconds;

quality .characteristic demand {
domain: tuple {
period ,
mandatory ,
optional

Listing 4: CQML* resource CPU specification.

quality decodetgood.cpu {
cpu.period= 40000;
cpu.mandatory . taslkquality = 100;

cpu.mandatory . executianime = "vdecodermand. dist”;
cpu.optional.taskquality >= 95;
cpu.optional.executiontime = "vdecoderopt_q3.dist”;

Listing 5: CPU demand of Verner in tlgmod _work case.

12



descriptors for component specifications and component implementations, but these
are very simple and straight-forward, so that we will omit them here for brevity. The
most interesting functional descriptor is the assembly descriptor, which defines the
structure of an application.

The XML snippet from the assembly descriptor of our example in Ligtjng 6 illus-
trates the definition of component networks usiemplate elements. It shows the
wiring of the component assembly from Hig. 1. The template is triggered when a client
wants to create @ontroller instance via its home interface. The declaration part of

<template homeplacementref="Controllex”
<instance id="sync” homeplacementref="Synchronizer”/
<instance id="vdec” homeplacementref="VideoDecodes”/
<instance id="adec” homeplacementref="AudioDecodes”/
<instance id="mux” homeplacementref="Demuxers/

<connectinstance id="this?
<connect type="call”
usesport="SyncControl” providesport="SyncControl”
instanceref="sync"%

<connect type="call”
usesport="DemuxControl” providesport="DemuxControl”
instanceref="mux"%
</connectinstance

<connectinstance id="syn¢”
<connect type="stream”
usesport="UncompVideo” providesport="UncompVideo”
instanceref="vdec"$

<connect type="stream”
usesport="UncompAudio” providesport="UncompAudio”
instanceref="adec™
</connectinstance

</template>

Listing 6: Assembly descriptor excerpt for the example application.

the template consists of sevemastance elements assigning an IBync , vdec ,
adec, andmux in the example) and a component type to each instance. The actual
type is determined by indirectly referencing component specificationsowigplace-
ments (Similar to those of CCM), which are also described in the assembly descriptor,
but omitted for brevity.

A connectinstance element for each component instance including the in-
stance that triggered the creation of the component net (representbi$ by forms
the wiring part. Several containembnnect elements specify whicprovides-
port of which component instance must be connected to the giseaport of the
instance referenced in the surroundoonnectinstance element using the names
of the ports specified in Fig] 1.

5.2 Specification Language Concepts

After the discussion of a concrete example, we now explain the general structure of
ComLT—our language for specifying non-functional properties—and the various de-
scriptors for the specification of the functional make up of an application in more detail.

13
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5.2.1 QML *: A Language for Specifying Non-functional Properties of Compo-
nent-Based Systems

To specify non-functional properties of component-based software (and in particular
realtime properties), we useg®mL™ (Rottger and Zschaler 2003), an extension of the
Component Quality Modelling Language @®L) (Aagedal 2001) defined by Aagedal.
CqomL’s terminology is based on the ISO QoS Framework (International Standardisa-
tion Organisation 1998).

Figure@ shows the conceptual structure ajM@ * represented as a UML class
diagram. The basic building block of agmL T specification is the quality characteris-
tic. It represents an entity to be constrained by the specification. Quality characteristics
have a name, a domain, and a semantic, given byadhes clause—an expression in
OCL specifying how values of the characteristic can be determined in a running system.
Examples for characteristics are frame rate (see the exangie €-specification of
this characteristic in Listing|1 on page]|10), jitter, screen resolution, but also—in a dif-
ferent context—learnability. Based on these quality characteristics, quality statements
are used to specify constraints on quality characteristics. We have seen an example of
such a specification in Listirf{g 2 on pggg 11. Because both quality characteristics and
quality statements are parametrised, they allow for reuse of parts of the specification in
different contexts.

The specification is completed by associating quality statements with components
of the system. For this, @uL™ offers the concept of quality profiles. Listi@; 3on
page IP shows a concrete example of a quality profile. Here, the formal parameters
of the quality statements are replaced by actual elements (e.g., operations, streams) of
the component for which the QoS constraint is to be specified. There are three ways
in which a quality statement can be associated with a compopentides , uses,
andresources  clause (compare the corresponding keywords in Ligting 3). A QoS
offer (provides ) describes the quality a component offers to its environment, pro-
vided it receives services with a certain quality from other componests() and it
is allocated a certain amount of resourcess@urces ). Resource specification can
vary from very simple specification in a name—value style to highly complex speci-
fication including distribution functions. The latter is the case for our example CPU
demand specification, which can be seen in Listifjgs 4 &and 5. As explairjedtigéR
and Aigner 2002), resources can be viewed as system-level components, in contrast to
normal application-level components.

A profile, therefore, describes the relationship between the quality of services re-
ceived by a component from its environment, the resources allocated to the component,
and the quality of services the component provides. Profiles can contain multiple sub-
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profiles (not shown in the figure, but Listifgg 3 shows an example), which essentially
represent different working regions—or modes—of the component. Sub-profiles are
used as a means to express adaptivity by allowing the runtime environment to switch
between profiles—for example, when resource availability changes. For this purpose
a profile can have #&ansitions clause, which defines all allowable transitions
between sub-profiles, and specifies an operation in the component’s interface which
the runtime environment calls to trigger the transition. This will be explained in more
detail in Sect.17.

Finally, CQML™ specifications can be structured using quality categories, which
essentially provides name spaces to the specifier. We have not explicitly mentioned
them in the example.

5.2.2 Specifying Functional Contracts and Component Assemblies

Although we mainly focus on the description of non-functional properties of compo-
nents, functional aspects must still be considered. We use three XML-based descriptors
to describe properties of specifications, implementations, and component assemblies,
respectively. The descriptors are bundled with other constituents, such as binary code,
in component archives that can be deployed into the runtime environment.

Specification Descriptor A component specification basically consists of a set of
named used and provided ports, and a home interface. Additionally, each component
offers anequivalent interface similar to the same concept in CCM that allows clients

to navigate among the component’s ports and that represents the component identity.
Streaming ports are a special type of component interfaces, which we introduced in our
component mode] (&bel et al. 2004). They are connected using the same mechanisms
as for common ports.

Implementation Descriptor A component implementation is always bound to ex-
actly one component specification. This is done by referencing the unique specification
ID. The implementation descriptor also contains mappings from all interfaces defined
in the specification descriptor—equivalent, home, and port interfaces—to actual imple-
mentation classes. The definition of non-functional properties also belongs to a partic-
ular component implementation but following the separation of concerns principle, it
is specified in the @ML* descriptor (cf. Sec.l). The container uses information
about both functional and non-functional properties to create component instances at
runtime.

Assembly Descriptor Component assemblies need to be defined declaratively be-
cause components must not explicitly create or destroy new instances and component
references cannot be exchanged between components. This is necessary to ensure that
the container can take into account all component instantiations, connections, and re-
quired resources when determining whether to accept an additional requesis-The
sembly descriptor defines which components need to be created and how they are in-
terconnected by employing concepts from Architecture Description Languages (ADLS)
(Medvidovic and Taylor 2000). Listir[g 6 on p&ge 13 shows an excerpt from the assem-
bly descriptor for the example, namely from the template section.
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5.3 A Software Development Process for Component-Based Soft-
ware with Non-functional Properties

Non-functional properties must be considered throughout the complete process of de-
veloping software. Figufg 7 shows an overview of a development process which explic-
itly takes into account non-functional properties and components. We have reported on
earlier forms of this process in previous publicatians (Aigner et al. 2008pRr and
Zschaler 2004; Bttger and Zschaler 2004).

After the requirements analysis thgplication designer begins to model the sys-
tem. This includes modelling of non-functional properties by specifying non-functional
constraints and attaching them to components and connectors. Our approach separates
specifying non-functional constraints from the definition of the underlying measure-
ments (i.e.,quality _characteristic s in CQML™). Measurement definitions
can be very complex, but on the other hand will be developed only once. Therefore,
we separate the roles nfeasurement designer andapplication designer in our process.
Their combined efforts lead to a specification of the system including its non-functional
properties.

Our process comprises the following major actions (cf. [Hig. 7):

1. Definition of measurements at different levels of abstraction by the measurement
designer. The measurement designer can do so independently of application
development and even at a far earlier time.

2. Use of measurements during the specification process by the application de-
signer. The application designer constrains measurements and binds these con-
straints to elements of the functional model to indicate expectations on the com-
ponent implementations to be used.

3. Tool-supported refinement of measurements. The application designer chooses
one out of several kinds of provided refined measurements. These have been
previously provided by the measurement designer together with an informal de-
scription of each measurement. Tool-supported refinement is discussed in more
detail in (Rottger and Zschaler 2004).

4. Implementation of components bymponent developers. These can either be
components developed by third parties and selected to be placed into the applica-
tion under development, or components implemented specifically to fill gaps in
the application design. Component developers use a test confainer (kieyerh
and Neumann 2004) to analyse the non-functional properties of their component
implementations and provide a corresponding specification—for example, the
execution time distribution functions—to the application designer. Component
implementations are maintained in a component repository for later reference.

5. Assembly of the application from components from the component repository.
At this stage, compatibility and schedulability analysis can be performed to val-
idate the feasibility of the design.

The resulting non-functional specification is used for a variety of purposes. Besides
generating code for runtime monitoring of QoS parameters, its main use is in providing
a base for QoS contract negotiation and resource reservation in the running system, as
described in the following section.
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Figure 7: Overview of the development process

6 A Runtime Environment for Component-Based Soft-
ware with Enforceable Realtime Contracts

This section introduces the runtime environment for our components consisting of both
the realtime operating systemrRDPsand the component containep@8QoS with its

split architecture. We also explain how our sample application, specifiedyim.C

and our functional descriptors, is set up and executed by our runtime environment; that
is, the steps the runtime environment takes to translate the component-based specifica-
tion into a task-based specification for the RTOS.

6.1 Drops-— The Dresden Realtime Operating System

DROPSsis a realtime-capable operating system based on the L4 microkernel (Liedtke
1995), which provides fast inter-process communication (IPC). Device drivers are im-
plemented as user-level servers to provide isolation and fault-tolerance for the OS. To
demonstrate the flexibility of L4, Linux has been modified to run as a user mode server
on top of L4: [*Linux. This approach demonstrates that in order to provide features
such as realtime or security, only a few parts—for example, device drivers—have to
be ported, while the majority of the former application, which in our case means the
major portion of the Linux code, continues to run unmodified.

Dropsincludes a realtime window manager, DOpPE (Feske a@dtigl 2004),
which can guarantee refresh rates for its realtime clients. Non-realtime clients of DOpE
are drawn whenever there is time left. DOpE also contains features to hide the content
of sensitive windows from untrusted windows.
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Figure 8: The split container architecture running the example application

Resources in Ropsare managed by resource managerdr{ig et al. 199D). Re-
source managers can form hierarchies to either combine different resources into a
higher-level resource, or, if managing the same resource, to build resource domains.
Resources can be reserved by an application in advance to ensure their availability
when they are used. This includes the reservation of computation time, memory, and
so on.

6.2 A Split Architecture for a Runtime Environment for Realtime
Components

Based on our experience with the development RbBswe have concluded that real-
time capabilities are often not necessary for large applications, but only for small parts
of them. Consequently, we applied the same philosophy to the component container
and designed it as a split architecture where we have a lamgeealtime container
(CONQOSE]), which is based on JBogs (Fleury and Reverbel 2003), and a graall
time container (CONQOS RT), which runs directly as a user-level server on the micro-
kernel. By doing so, we both simplify the development by reusing existing software
and minimize the amount of realtime-capable program code. A communication inter-
face connects the two parts and makes them appear as one component container for
applications. Figurg]8 depicts the general structure of our split container architecture.
The following sections describe design and function of the non-realtime and real-
time container. More details on the communication between containers and compo-
nents can be found in @el et al. 2004; Pohlack, Aigner, anciiig 2004).

Non-realtime container CONQOS implements all functions that do not need to pro-
vide realtime guarantees. This includes the deployment process of components, the
management of component specifications and implementations, as well as the initial-
ization and startup phase of applications. In general, the@0S acts as a controller

2Container supportingQuality of Service
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of CONQOS RT. In Sect[6.33 we describe the functions in more detail ordered by
their usage in the component life-cycle.

CoNQOoS deploys component specification and implementation archives contain-
ing binary code and descriptors (see Sect. $.2.2) at startup or at runtime triggered by
a deployment tool. Descriptors are processed and information about both functional
and non-functional properties is stored in an internal repository. A name server enables
clients to obtain initial references to home interfaces. They are bound to name server
entries during component deployment as specified by the assembly descriptor.

Clients create actual component instances via the home interface and transmit real-
time requirements together with tkeeate request. The actual contract negotiation
is then performed by the contract manager in three steps:

1. Component assembly computation: A request is typically not handled by a single
component, but by a network of cooperating components. In this step, the con-
tract manager recursively derives a representation of this component assembly
from information specified in assembly descriptors. The component assembly
representation exists entirely at the level of (functional) component specifica-
tions, no implementations have been selected so far.

2. Component implementation and profile selection: Based on the initial require-
ment of the client, only component implementations and profiles are selected
that mutually fulfil the required and offered quality statements for each connec-
tion between used and provided ports in the component assembly.

3. Resource reservation: The contract manager transmits the resource demand of
the concrete component assembly found in the previous step to the resource man-
ager (cf. Secf.6.3/2). If the resource reservation has been completed success-
fully, the contract manager returns a reference to the requested component in-
stance to the client. Otherwise, the contract manager must return to the previous
step and try to find another component configuration.

Realtime container For the realtime container we have identified a minimal set of
necessary services. It contains a simple instance repository, communication infrastruc-
ture, resource managers, and a small framework for components, consisting of inter-
faces and base classes for component instances, and helper functions.

6.3 Revisiting the example — Running the Video Player Application

In this section we walk through an example of how the runtime environment sets up
and runs the video player application for a specific video.

6.3.1 Configuring the Video Player Application

The client uses the name server adi@OS to acquire a reference to tmntrol-
ler home interface. It then calls theeate method, passing the required non-
functional properties as arguments. In our example, the client might demand videos to
be displayed with at least 25 frames. This method call is processe® OGS and
triggers the contract negotiation process as illustrated in [Sett. 6.2.

The component assembly computation step of the contract negotiation process in
CoNQoS forms the component assembly (only at the level of component specifica-
tions) as depicted in Fi§] 1 using the assembly descriptor from [Seft. 5.1. In the next
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step the contract manager selects appropriate implementations and QoS profiles for
all component specifications of the component assembly determined. In our example
we have two implementations for thddeodecoder and one implementation for
Audiodecoder , Synchronizer , Demuxer, and Controller specifications,

resp. One/ideodecoder implementation only provides 20 frames per seconds and

is therefore not selected. Additionally, the contract manager selects the QoS profiles
with the maximum quality if more than one profile is available.

In the final step of the contract negotiation process, the contract manager adds up all
necessary resources of the component assembly and sends it to the resource manager
in the realtime container. If the resources are reserved successfully, as described in the
next section, a reference to tentroller component is returned to the client.

6.3.2 Reserving Resources

Resources are managed gource managers as described in (Bitig et al. 199D).

If a component intends to use a resource with a specified quantity, it must make a
reservation with the resource manager. The resource manager checks if the requested
guantity of the resource is available and either grants or rejects the request.

Because a client may request multiple resources, the reservation has to have trans-
actional semantics: all resources have to be granted or rejected. Therefore, we use a
centralizedQoS manager that receives a combined reservation request for all requested
resources. The QoS manager iterates each of the requested resources and tries to make
a reservation with the respective resource manager on behalf of the client. If all re-
source requests are granted, the request of the client is granted as a whole.

A request for a resource contains a generic part—the name of the resource—to
allow the QoS manager to identify the responsible resource manager. The rest of
a request for a resource is resource-specific and has to be interpreted by the respec-
tive resource manager only. The container can generate the complete resource request
from the GQML™ resource specification of all component implementations in the net-
work, because we took care to base tt@uC * specification on the same mathematical
model, described in Sei. 4, as our schedulers.

The resource-specific part of the request describes the quantity to be reserved. Us-
ing this information, the resource manager performs an admission test and, if the re-
guest can be admitted, returns a handle to the reserved quantity. When all handles
are collected, the QoS manager returns these handles to the caller, which uses these
handles to access its reservation.

To minimize the modifications to components required to access reserved resources
with handles, we use resource proxies. Resource proxies intercept resource accesses,
identify the accessing component, and add the respective resource handle to the access
call. In this way, the accessed resource can identify the reservation and grant or deny
the access.

If a component can cope with different resource constellations, such as a large
amount of processing time and a small amount of memory or less processing time but
more memory, its specification contains alternatives. The QoS manager can then use
a global cost evaluation to determine an alternative that provides the best utilization
of the resources. If more than one alternative provides equally good utilizations, the
specification contains preferences (declared usingtingber of alternative ).
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6.3.3 Starting, Running and Stopping the Application

After all the resource reservation steps have been successfully complete@dS

asks @MNQOS RT to create instances of the realtime components—demultiplexer, au-
dio and videodecoder, and synchronizer instances in our example as depictedjn Fig. 1.
Afterwards these instances are connected and started, again by sending appropriate
commands from GNQOS to CONQOS RT. From then on, the instances are only con-
trolled and executed by @VQOS RT.

At runtime the component uses the resources reserved for it. Furthermore, the
application can be influenced via the GUI. Typical video playing tasks, such as starting
and pausing the video and seeking in the video are handled this way.

After completion of the work or on user request (i.ereanove -call on the con-
troller's home interface) the whole video playing application is terminated and all re-
served resources are freed.

7 Adaptation to Changes in Resource Availability

Environment conditions or resource availability may change during application run-
time. To deal with such situations, enforceable component-based realtime contracts
enable adaptation of an application to changing resources and other environment con-
ditions.

We deploy resource reservation mechanisms to guarantee realtime properties for
applications. Thus, it might appear that adaptation techniques are unnecessary or even
mutually exclusive to our approach. On the contrary, we argue that adaptation can im-
prove overall quality by making better use of temporarily available resource surpluses
and by compensating for unforeseen long-term environment changes. Adaptation and
reservation work together in our architecture, which allows for adaptation on four dif-
ferent levels:

1. Omitting optional parts. This covers adaptation as described by resource demand
specifications and special structural conventions of our component model.

2. Adapting by adjusting parameters

3. Adapting by adjusting parts of an application’s structure. Together with the pre-
vious item, this covers adaptation described by profiles in th®IC" specifica-
tion.

4. Finally, adapting statically by selecting an appropriate component implementa-
tion while setting up an application. This has already been covered in the previ-
ous section, but we list it here because it also constitutes a form of adaptation.
This covers adaptation which can be described either by profilegwLC, or
by providing different implementations for the same component specification.

A key concept in our approach is that we want to separate the actual adaptation
logic as much as possible from the business logic constituting the components’ code.
Adaptation should be managed by the runtime environment, it should not be something
application or component developers need to worry about.
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Figure 9: Invoking methods to start period or optional parts.

7.1 Omitting Optional Parts

The most basic form of adaptation is to omit work for which there is no time left in
favour of other work which may thus be finished on time. This can be easily supported
within our task model (cf. Sedt. 4.1): Parts of work which can be omitted without com-
promising the essential functionality and consistency of the application are represented
as optional parts while the remaining work is represented by the mandatory part of a
task.

Components must follow some conventions so that the container can recognise their
mandatory and optional behaviour, and can thus, together with the underlying platform,
control when to leave out optional parts. Specifically, each component has to provide a
run _mandatory() and arun _optional() operation. The container calls these
operations when appropriate and provides the necessary interaction with the platform.
Specifically, the container provides a loop in which it first waits for a notification from
the scheduler to begin work. It then invokasn _mandatory() , negotiates with
the scheduler about the start of the optional part, and finally makes a conditional call
to run _optional() . Listing[7 presents thisrork Ioop in pseudo code. The oper-

while (true) {
wait_for_period.start (theComponent.taskd);
theComponent. rurmandatory () ;
if (run_optional) {
wait_-for_optional-start (theComponent.taskd);
theComponent. runoptional () ;
} else { run_optional =true; }

Listing 7: Central loop for active components.

ationswait _for _period _start andwait _for _optional _start are part of
the scheduler API, signalling that a task is ready to start its period—and therefore its
mandatory part—and its optional parts, respectively. These operations work as de-
picted in Fig[9. When invoked (represented by an arrow pointing downward in the
figure), they do not return (represented by an arrow pointing upward) until the sched-
uler determines that the task has become ready to work. Thus, when the operations
return the mandatory or optional work can be started.

The CPU scheduler calls thetification interface responsible for the component
to indicate when no computation time is available for the optional part. The container
implements this interface for all its components and uses the information to set the
run _optional  variable to the appropriate value. Listing 8 shows the corresponding
pseudo code.

For our video player application, good work could be quantified by post-processing
95% of the pictures. This means that the mandatory part of the corresponding task
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while (true) {
message = receiv@reemptionmsg (theComponent.taskd);

if ((message.type == MISSINGEXT_RESERVATION) ||
(message.type == MISSINGEXT_PERIOD)) {
run.optional = false;

Listing 8: Central loop of the container’s notification interface implementation.

consists of decoding the frames, while the optional part consists of the post-processing
steps. Thussun _mandatory()  would be implemented to invoke the decoding rou-
tine, andrun _optional() would call the post-processing routines in the appropriate
order.

7.2 Parameter-Based Adaptation

For several real-world problems skipping a part of the work as described in the previous
section is not always possible because the algorithms and data to be processed are not
well suited to this kind of adaptation.

For example, in case of memory shortage in a system it will not be helpful if every
second frame would be skipped or if a higher percentage of disk requests would be
omitted. Instead it is necessary to reduce the resolution of a video stream, which is
processed by a chain of filters, so that in every component less buffer memory is used.

This kind of adaptation is called parameter-based adaptation, as parameters of the
involved components are adapted at runtime. In order to be adaptable to new resource
situations each component must implementdiiptation interface. The component
container uses this interface consisting of methods defined by ¢he € specifica-
tion to switch QoS profiles. The parameters and the values to set in order to switch to a
certain profile are defined in thiansition clause of the specification as described
in Sect[5.2.]l. Additionally, thedaptation manager, as part of the container, perceives
changes in the amount of available relevant resources and notifies components to be
adapted using their adaptation interface. To summarisegdfiy@ation manager de-
cides when to adapt and which components to adapt to new resource situation based on
runtime information about the system.

To collect the data to be used by the adaptation manager weruséae monitor-
ing system. This system typically consists of several sensors or feedback mechanisms
implemented in the different resource providers, that is, the system collects information
about the global resource usage situation in the system. Imagine a memory provider
that simply provides information about the amount of available and reserved memory,
a network driver with a realtime protocol stack that provides information about the re-
served bandwidth, or a hard disk driver that provides information about the amount of
disk request and distribution of execution times, which may vary highly, depending on
the current load. Furthermore, specific applications may provide feedback information
specific for their domain. For example, our video decoder monitors its CPU demand
for decoding single frames and makes this information available.

We want to illustrate parameter-based adaptation with one implementation detail in
our system. As mentioned, the video decoder monitors CPU time necessary to decode
video frames over a time period of several seconds and feeds this information to the
runtime monitoring system. Based on this information and the global CPU usage the
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adaptation manager signals the video decoder to adjust the post-processing algorithm,
thereby trading computation time for quality. Using this mechanism we achieve a more
constant CPU usage for otherwise much more erratic CPU demands.

7.3 Adaptation by Structural Modification

The previous section illustrated how a component implementation with different QoS
profiles can be utilized to adapt to environment changes. Still, the question remains
how components that support different QoS profiles can be designed and developed
efficiently. Switching the QoS profiles of components requires internal changes in
the component—for example, omitting some processing steps or choosing different
algorithms for calculations. A possible implementation strategy is to manually write
special code, likef...else or switch(mode)  constructs, in the component.
However, this process hides information about structural adaptation and, moreover, it
is tedious and error-prone for the developer. Instead, the necessary reconfigurations of
the component should be made explicit and untangled from the program logic. Thus,
we adopt the concept of composite components to encapsulate structural adaptation
and hide it from other components @Bel 2004). Each QoS profile is mapped to a
different internal configuration of the composite component and the definition of these
configurations is part of the composite component.

Our model of composite components supporting different QoS profiles is depicted
in Fig.[10. Composite components like all our components have fixed sets of provided
and used interfaces, even if the internal configuration is changed in the course of a pro-
file switch. This means that the reconfiguration process is transparent to other compo-
nents of an application. Only contracts for non-functional properties to interconnected
components are changed together with the QoS profile.

A particular configuration of a composite component consists of a set of subcom-
ponents, connections between them, and a binding from external interfaces of the com-
posite component to internal interfaces of subcomponents. Configurations are defined
by a descriptor based on the assembly descriptor (cf. [Seci 5.2.2) enhanced by informa-
tion about interface binding. Additionally, information about non-functional properties
required for contract negotiation is attached to each configuration. This data must
be determined by the component developer using appropriate measuring tools (Mey-
erhbfer and Neumann 2004).
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The interface binding, being the central hub, forwards request from external in-
terfaces to interfaces of subcomponents and also wires internal subcomponents. The
adaptation manager controls the interface mapping and the reconfigurations using the
adaptation specification. Both interface binding and adaptation manager are only con-
ceptual constituents of our composite components. The component container actually
implements their functionality using the particular component descriptor.

8 Related Work

The OMG’s RT/CORBA specification (Object Management Group 2003a) defines re-
altime extensions for the CORBA middleware platform. CORBA belongs to the older
generation ofexplicit middleware; that is, it provides a set of middleware services,
which have to be used explicitly by application programmers. However, our platform
follows the approach ofmplicit or descriptive middleware; that is, the use of such
services is not directly implemented within components’ application code but provided
implicitly by the container runtime environment according to additional component de-
scriptors. This is the philosophy behind most modern component-oriented middleware
platforms—for example, CORBA Components or Enterprise JavaBeans.

The OMG’s CORBA Component Model (CCM) (Object Management Group|2001)
forms the basis for many functional concepts of our component model, but it does
not address special problems related to non-functional properties—for instance, dy-
namic selection of implementations at runtime. Like Sun’s Enterprise JavaBeans (EJB)
(DeMichiel 2003) component model, CCM supports only a limited, fixed set of non-
functional aspects like persistence, access control, transactions, and so on.

CIAO (Wang et al. 2003; Gokhale et al. 2002), another related project, builds a
QoS-enabled CCM implementation on top of TAO (Schmidt, Levine, and Mlingee
1998). The project’s philosophy is a strong adherence to existing OMG specifications
such as RT/CORBA and CCM, and the extension of those. In contrast, we decided
to focus on the challenges of supporting non-functional properties. Hence, we have
tried to keep the functional part of our component model as lean as possible while still
adopting tried and tested concepts. The considerable overhead of implementing or ex-
tending a fully compliant CCM infrastructure would have been counter-productive to a
prompt realization of our main targets.

The project QuA|[(Staehli and Eliassen 2D02) aims at precisely defining an ab-
stract component architecture, including the semantics for general QoS specifications.
While the abstract QUA architecture could theoretically be implemented on top of any
realtime-capable combination of operating system and middleware, our approach is
more closely tied to Bops(Hartig et al. 199B). This allowed us to fully leverage all
advantages of this platform and thus to realize our goals within a relatively short time
frame.

The Real-Time Specification for Java (RTSJ) (RTJ 2001) introduces the concepts
of timeliness, schedulability, and realtime synchronization to Java-based applications.
One of the biggest challenges in this context is to prevent Java’'s garbage collector from
interfering with realtime task scheduling. Furthermore, resource reservation is not ad-
dressed by this specification, which would prevent an implementation of our concepts
on top of this platform. The reference implementation of Real-Time Java is based on
TimeSys Linux|(TimeSys Corp. 2004), which ensures dependability of realtime appli-
cations by running critical sections in kernel mode. In contrast, our platfornr3
(Hartig et al. 199B) follows the philosophy of running as much code as possible in user
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mode, thus increasing system stability and safety.

Requirements for realtime extensions to Java were defined in the NIST fepart (Na-
tional Institute of Standards and Technology 1999). The NIST group proposes par-
titioning the execution environment into a realtime core providing the basic realtime
functionality and a traditional JVM, which services normal Java applications. Based
on these requirements, the J Consortium defined the Real-Time Core Extensions for
Java (RTCE)|(J Consortium 2000), which follows the idea of a separate core for real-
time services. RTSJ, in contrast, provides all services in one JVM, thereby containing
the realtime and the non-realtime applications. The architectural RTCE approach is
similar to the design of RoPS in that both run large and complex parts in a classic
non-realtime environment and only small, predictable parts in a realtime environment.

The 2K Operating System (Kon et al. 2000) implements a resource management
system targeted at distributed applications. It focuses on load balancing through global
knowledge about resource utilization on local nodes (Kon et al.|2001). All local re-
sources are monitored by a local resource manager, which is also responsible for admis-
sion, resource negotiation, reservation, and scheduling of jobs. Resources are described
using a name—value pair: The name identifies the resource and the value contains a de-
scription of the resource properties. One reservation can contain several resource de-
scriptions for different resources. In contrast, we use heterogeneous resource managers
and a generic description for resources and reservation interfaces.

Other approaches have been proposed for the specification of timing properties
of software systems. Most notably among them is probably the “UML profile for
schedulability, performance and time specification” (Object Management Group 2002).
This approach, however, is focused only on the specification of issues relevant to the
performance properties of the system. In contragtmC" and its predecessors take a
more generic view of things and allow arbitrary quality characteristics to be formally
specified in the language.

9 Outlook and Conclusions

In this paper we have presented our approach to guaranteeing realtime properties of
component-based software. It is a hallmark of our approach—and our main contri-
bution—that we consider realtime properties in an integrated manner from the phases
of inception and design to the actual execution of the final system. We refer to this
approach asnforceable component-based realtime contracts.

There are at least two general conclusions that can be drawn from this work: (i)
realtime component-based systems can be constructed from components whose real-
time properties have been formally described, then, the resulting application’s realtime
properties can be checked at the design level already; and (ii) component runtime en-
vironments dynamically map component-oriented properties into task-based, resource
reservation requests and manage adaptation of such reservations at runtime; we refer
to this ascontainer-managed quality assurance.

In particular, we have shown how application designers can specify realtime prop-
erties of components and applications, including the components’ resource demands,
using @MLT, and how this is integrated into a development process specifically de-
signed for building applications with realtime guarantees. We define two additional
roles in this process, namely the measurement designer, who formally describes the
properties of concern, and the component developer, who implements components and
guarantees their non-functional contracts. Furthermore, we have shown how the func-
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tional structure of an application can be described, and why standard architecture de-
scription language techniques are not sufficient in the presence of dynamic selection of
implementations by the runtime environment.

Our capability to give realtime guarantees is based in the Dresden Realtime Oper-
ating System (Rop9, which provides schedulers for workloads that can be split into
mandatory and optional parts. The gap between the component-based specification us-
ing CQML™ and the task-based world ofR@Psis bridged by a component runtime
environment, the GNQOS container. This container decides how to use the available
resources for the components to be executed. The container implementation we have
presented is split into two parts: a) a large part based on JBoss, which performs com-
plex component management, and b) a small realtime-capable part running directly
on the realtime operating system and executing components with realtime demands.
Using a video player application as an example, we demonstrated how the specifica-
tions developed in the design phase are used by the component runtime environment
to select component implementations, create instance networks, reserve resources, and
eventually execute an application guaranteeing realtime properties as specified. Al-
though our approach is reservation-based, we strongly advocate the need for adapta-
tion even in such systems. Hence, we present three strategies for dynamic adaptation of
component-based applications to changes in resource availability at runtime: Omission
of optional work loads, parametrised mode changes, and structural adaptation encap-
sulated by composite components.

Although we were able to show an integrated approach to providing realtime prop-
erties to component-based applications, areas remain open for further research:

e So far, our runtime environment can provide realtime guarantees, and it sup-
ports other non-functional properties as long as they do not imply specific re-
quirements on the runtime environment. We are working to define a generalisa-
tion of our split-architecture approach to provide specific support for other non-
functional properties. We have published a first paper on the relevant concepts
(Aigner et al. 2004). The core idea here is to use aspect-weaving technology
to generate a tailor-made container from different container strategies, each of
which supports a specific (combination of) non-functional properties.

e At the moment, the semantics ofg®@ L+ specifications is defined only by nat-
ural language descriptions, and the behaviour of the runtime environment. To
allow for CoMmL™ specifications to be integrated into the development process
even more tightly than they are now—in particular for partial specifications to
be developed independently by different component developers and combined
by application assemblers later on—the semantics @f1Ct must be defined
much more formally. We are working on a semantic framework for this purpose
(Zschaler 2004).

e Not all resource requirements can be specified statically (e.g., with MPEG-4
part 10 post-processing is an integral part of the decoding step itself, so one
cannot use this step for adaptation as we did with our video-player application).
Here, resource usage is highly dependent ondthe processed, which is not
known at component deploy time. Additionally, sometimes resource require-
ments are stable on one machine but not constant over machine boundaries due
to different hardware. For both cases we aim to determine resource usage at
runtime—that is, after deploying components. The problem of different machine
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configurations could be solved by running calibration tests after deploying com-
ponents on the target machine. We work on defining sensible use cases stressing
and monitoring newly deployed components with sample data sets. For the case
of fluctuating resource requirements we work on deploying runtime monitoring
with feed-back techniques.

e Based on a precise understanding of non-functional specifications we plan, in the
longer term, to integrate more advanced analysis techniques into our approach.
For example, we would like to integrate more intelligent container strategies
that automatically determine the number of component instances to pre-create
at system startup time, or the amount of buffer space to allocate for incoming
service requests.

Enforceable component-based realtime contracts are a systematic approach for sup-
porting realtime properties of component-based applications from design to runtime.
Together with container-managed quality assurance they can be extended to support
other non-functional properties, too.
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