
Towards Runtime Monitoring in Real-Time Systems

Martin Pohlack, Björn Döbel, and Adam Lackorzyński

Technische Universität Dresden

Department of Computer Science

Operating Systems Group

{pohlack, doebel, lackorzynski}@os.inf.tu-dresden.de

Abstract

In this paper we present the state of our work on runtime monitoring for real-time systems: a way to

observe system behavior online without unpredictably disturbing real-time properties.

We discuss generic requirements to achieve these properties wherefrom we deduce our monitoring frame-

work architecture. We describe this architecture in detail and discuss several challenges for our implemen-

tation called Ferret. We also explain why common operating system primitives, such as message passing

or system calls, should not be used for monitoring in the general case and propose a very low-intrusive

alternative. We also propose a way of measuring the intrusiveness caused by monitoring.

We applied our technique in different scenarios ranging from simple temporal debugging, resource re-

quirement estimation, gaining behavioral information of peripheral hardware devices to build timing models

for providing real-time capable service on top of them, up to whole-system views, such as the interaction

between concurrently running system threads. Our research platform also contains a para-virtualized ver-

sion of Linux that we use to run legacy applications. We discuss how to apply our framework to these

components with real-time requirements being only one of several important aspects. We also show how to

compare the behavior of our para-virtualized Linux kernel with the behavior of the native variant.

In this work, we demonstrate how to gain a continuous whole-system view by using only Ferret sensors

in all layers of our system, starting from the underlying microkernel, basic microkernel programs, real-time

applications, and the para-virtualized Linux kernel, as well as Linux user-space applications.

1 Introduction

Computer systems have been growing in complexity
for decades, by introducing new software layers and
by increasing functionality in established layers. Ac-
cordingly, the number of bugs increased as complex-
ity grew. Some problems can be found with static
analysis. Runtime monitoring can help where static
analysis fails by live peeking into running systems.

As many current systems are faced with these
problems, there are many solution attempts. In this
work we explore how to apply runtime monitoring es-
pecially to real-time systems. Our research platform
exhibits some interesting features which influenced
our design, in addition to plain real-time properties.

We use a para-virtualized version of Linux [11] to
run legacy applications, whenever no real-time func-
tionality is necessary. Even if certain applications
have real-time requirements, it is often not the whole
application, but only a small part of it. We there-
fore also support real-time and non–real-time com-
ponents in one system, interacting with each other

[15, 7]. As a consequence, one system configuration
might comprise many different software layers with
varying requirements. We want to monitor the sys-
tem in all those layers.

Of course, creating events and storing them must
be fast and nonblocking for the monitored compo-
nents. And last, but not least important, monitoring
must be simple to use.

Therefore, we built our monitoring framework
Ferret such that it only uses shared memory for
transporting monitoring data. This approach does
not require any system calls — and as such costly
kernel entries — at runtime and also makes Fer-

ret independent of the concrete interface of the layer
where we want to monitor (microkernel system calls,
Linux system calls, etc.).

The remainder of this paper is structured as fol-
lows: In Section 2, we describe related work, followed
by Section 3, detailing our design. We describe our
experience with several typical application scenarios
in Section 4. In Section 5, we conclude our paper
and discuss future work.

1



2 Related work

In this section, we describe existing monitoring ap-
proaches for operating systems and evaluate their
applicability to real-time system. Thereafter, we de-
scribe available utilities related to monitoring and
evaluation of obtained data.

The Linux Trace Toolkit (LTT) [19] consists of
patches to the Linux kernel that instrument a fixed
number of locations inside the kernel. These sen-
sors can be switched on to collect subsystem-related
events. A kernel module stores data and provides
it to user-space applications for further processing.
Our Ferret monitoring framework is similar in that
it provides means to generate events, and collect and
store data. It is different to LTT, because it does
not contain predefined instrumentation for any part
of our system environment. However, we can reuse
the locations identified by LTT in our Linux version.

Dynamic Probes (DProbes) [12] allow users to
dynamically instrument arbitrary locations within
an application or the Linux kernel. Whenever a
so-called probe point is hit, the framework executes
user-defined probe handlers. DProbes require probe
handlers to be written in a special language. Dy-
namic probes have the advantage that they do not
pose any probe effect on the system, if monitoring
is turned off. DProbes mainly provide means for
dynamic instrumentation, whereas Ferret aims at
providing an infrastructure for monitoring. Thereby,
both means can complement each other.

Kernel Probes (kProbes) [10] introduce the
DProbes concept to the Linux kernel. They are dy-
namically inserted into a running kernel by loading
a kernel module. Any location inside the kernel can
be instrumented by replacing instructions with a trap
event opcode. On x86 architectures, INT3 is used for
this purpose. When such an instruction is hit, the
kProbes framework performs all necessary tasks for
event generation. It executes handlers, single-steps
the original instruction, and finally returns control
to the code that raised the exception. In addition to
arbitrary kProbes, function-entry probes (jProbes)
and function-return probes (kRetProbes) are avail-
able. kProbes provide means for dynamic instru-
mentation in the Linux kernel, which we use to place
Ferret sensors.

Sun’s Solaris operating system uses DTrace for
tracing. DTrace also does not have any probe effect
if tracing is turned off for dynamic probes. Static
probes have no-ops in place if deactivated, which are
patched with calls to DTrace trampoline code on ac-
tivation. In addition to kProbes, DTrace is able to
probe user-space applications. Probes are written in
a specialized language called D. Although DTrace of-
fers versatile aggregation support, it is not especially

suited for real-time systems, for example, probe code
is executed with interrupts turned off in the kernel.

Each of these approaches uses system calls to
hand over data between in-kernel sensors and user-
space monitors. Dynamic probing additionally uses
exceptions to handle probes. These means add an
additional overhead to the probe effect caused by the
instrumentation. We therefore do not use dynamic
probes in the real-time parts of our system, but only
static probes. On the other hand, dynamic probes
are an extremely flexibly way of gaining information
about unforeseen problems in running systems. We
therefore use kProbes in our Linux kernel version (a
non–real-time part) to instrument it with Ferret

sensors. We describe the kProbes port in Section 3.5.

In his thesis “Monitoring, Testing and Debug-
ging of Distributed Real-Time Systems” [18] Thane
discusses the problem of intrusiveness for systems
with embedded software sensors. He argues to gen-
erally leave them in the system even for the final
deployment. After all testing has been done with
the sensors in the system, removing them for the fi-
nal deployment would be a too big change. Also,
by making them part of the system already early in
the design process, there is no additional overhead
involved in having runtime monitoring, so the intru-
siveness is (defined to) zero.

While this approach might work and even be re-
quired for embedded systems, we target a different
class of systems where we can not even enumerate all
potentially required sensors. Also, in our scenarios,
the applied sensors and their type were quite prob-
lem specific. While the single sensors have a negligi-
ble overhead, always enabling all of them would slow
down the system considerable. We can, of course, use
Thane’s approach for simple, hard real-time parts of
our system, where functionality and monitoring re-
quirements are known beforehand and are static. In
this case type, number, and functionality of the sen-
sors can be determined.

Magpie [2] is a toolchain that can, based on
observed events of one or several connected sys-
tems, extract requests. Requests are typically the
unit of interest for human interpretation or perfor-
mance evaluation, for example, everything that be-
longs to a single HTTP request (potentially crossing
machine boundaries on the server side for accessing a
database), or everything related to displaying a sin-
gle video frame. What comprises a request is highly
problem specific and can be defined in schemata.
Also other event post-processing is defined there.

Originally, Magpie worked only as a client for
Event Tracing for Windows (ETW). It can process
traces online and offline, but does not give real-time
guarantees. However, online usage was shown to be

2



feasible in a typical business scenario [2].
ETW however, has properties that make it un-

suitable for real-time systems. Communication with
clients works with a set of buffers that are handed
to consumers once they are full; there is no upper
latency bound (e. g., if buffers are filled slowly). In
[2] Barham and colleagues mention an approximate
processing delay of one second for the online ver-
sion of Magpie. Additionally, ETW notifies event
consumers with call-back functions that introduce
additional causal relationships between the observed
and the observing entity. This infringes the desired
property of the minimal probe effect. We avoid this
problem in Ferret by not synchronously notifying
monitors.

As Magpie has interesting properties for find-
ing, building, and post-processing requests, we mod-
ified the Magpie toolchain to work with Ferret and
adapted its inner workings to our L4 architecture. In
Section 4 we present example traces processed with
our extensions to Magpie.

Different sources give different numbers about
ETW overhead: [13] estimates 1500–2000 cycles and
[14] about 1000 cycles. For posting ETW events from
user-space, at least one kernel entry is involved. In
Ferret we do not pay kernel-entry costs for each
event.

3 Design

While designing Ferret we tried to bring in line
general requirements for runtime monitoring systems
(e. g., low overhead, ease-of-use, versatility, ...), as
well as requirements derived from the real-time na-
ture of the target system (Drops [3]). In this design
discussion we focus on the latter properties that are
low intrusiveness, low probe effect, or Heisenberg’s
uncertainty principle for software.

We aim at a software-only solution, that is, we
have no additional hardware devices snooping mem-
ory busses, CPU cycles, or unusual high precision
timers, because we want to deploy our framework
easily on standard machines, basically everywhere
where our system runs.

Drops consists of many heterogenous compo-
nents, including L4Linux and normal time-sharing
software on top of it. Also, we have several scenar-
ios where real-time and non–real-time components
interact. Therefore, we want to be able to monitor
all types of components and their interaction.

Many systems implement monitoring for user-
level components with the help of system calls that
care for sensor buffer management, taking times-
tamps, ordering, and atomic execution of monitoring
code.

We have not chosen this approach for several rea-
sons. First, it includes the additional overhead of
a system call (kernel entry). Second, some compo-
nents in our system cannot and must not directly in-
teract with the microkernel using system calls (e. g.,
L4Linux user-space programs). Third, using kernel
primitives for monitoring might simply be too intru-
sive as it might change the system’s behavior we cur-
rently want to observe (e. g., scheduling). Instead, we
only use shared-memory buffers, which can be com-
pletely pre-mapped and pinned, so that monitoring
itself only incurs memory access, which should be
possible on all environments. Furthermore, we use
superpages and cache-line aligned data structures to
further reduce sensor overhead.

Instrumented real-time and non–real-time appli-
cations can post events by only using memory ac-
cesses. A non–real-time monitor can collect these
events online or offline. In the offline case, sen-
sor buffer memory must be large enough to hold all
events. The monitor waits until the experiment is
finished and collects data afterwards. It does not in-
fluence the experiment at all in that case. For longer
running experiments, the monitor works online and
periodically polls sensors and collects events from
them. It can process, filter, or store events. There-
fore, the monitor can either run with non–real-time
priority if there is enough slack time in the system or
it can be scheduled as real-time task. In both cases,
the monitor runs concurrently to the experiment, but
there is no observable relationship that would influ-
ence traces, as we refrain from synchronously noti-
fying monitors of the availability of new data. This
would be costly in the event creation path and might
create new communication relations that we did not
have in the unmonitored system. We can calculate
the necessary amount of shared memory for storing
events if the event rate is known beforehand [16].

3.1 Roles and nomenclature

In the following we define terms used throughout this
paper:

Events are assumed to be instantaneous and have
a timestamp associated. Events can carry addi-
tional payload, where the header typically con-
tains major and minor numbers, as well as an
instance identifier. Events are typically posted
into sensors but may also be serialized into a
persistent event stream for later evaluation.

Event types describe the payload data layout for
a class of events and have a semantic attached
as they stand for a certain action in the system.
Events are instances of event types.

Sensors are unidirectional means of transportation

3



Figure 1: Shown is the interaction of the sensor directory,
traced processes (clients), and monitors. The kernel is
shown as well as a special event source. Also note that
there is an n:m relation between event producers and con-
sumers.

for events. They are writable for event produc-
ers and readable by monitors. Internally, sen-
sors are composed of a shared-memory region
with meta-data describing the data layout and
identifying the type and instance of a sensor.
Additionally, they contain a container area for
events.

Probe points are locations in programs where
events may be created and posted. Instrumen-
tation places sensor code at probe points either
statically or dynamically.

In Ferret, we have three roles involved in tracing,
which roughly correspond to the three roles defined
in the “POSIX Trace standard 1003.1q” [9] (PTs).
We have traced processes (also called traced pro-
cesses in PTs) as event producers, we have monitors
as event consumers (called trace analyser processes
in PTs), and we have one sensor directory in Ferret

(the trace controller process in PTs). The interaction
of these roles is shown in Figure 1.

In the following, we will discuss the responsibil-
ities of each of these roles in Ferret and discuss
differences to PTs.

Traced process With Ferret, the creation of sen-
sors is triggered either by the traced process or
by a third party on behalf of the traced process.
In each case, the sensor itself is setup and config-
ured in a memory region by the sensor directory
that then maps the shared-memory region to the
traced process.
Actually tracing events happens by memory ac-
cesses into the sensor area inside the traced pro-
cess. Therefore, the traced process uses inline
functions defined in Ferret header files.
Ferret comes with a set of common event
types predefined. Customized types can easily
be defined by the user as well.

Monitor Monitors use the sensor directory
as a directory service to find required
sensors either via symbolic names (e. g.,
/ferret/l4linux-kernel/syscalls) or with
well known constants. After looking up sensors,
monitors register themselves as consumers. The

sensor directory gives them read-only access
to the corresponding shared-memory region.
These two mechanisms (the read-only access
and the indirection over the sensor directory)
prevents information flow back to monitored
processes from the monitors through Ferret.
After acquiring access to all required sensors,
monitors can periodically look into their sensors
for new events. Evaluation can happen online
or offline by storing event streams for later use.

Sensor directory The Ferret sensor directory
corresponds roughly to the Trace Controller
Process in PTs. It is responsible for creat-
ing and initializing new sensors, granting access
for other producers and consumers, managing
the sensor name space, and the handling of in-
stances. Ferret supports several instances of a
traced component running side by side, so, be-
side the sensor identifier, we use an additional
instance identifier to address sensors. Closing
of sensors and starting or stopping the whole
framework is also handled by the sensor direc-
tory.
After setting up a sensor and granting access to
producing and consuming tasks, the sensor di-
rectory is not involved in the event flow. Filter-
ing of relevant events can be done either in the
producer, by just not posting certain events, or
in the consumer by ignoring events. At a more
coarse-grained level, filtering can also happen by
subscribing to specific sensors. Ferret allows
for very fine-grained sensor usage, also across
processes, such that events might be grouped
thematically, rather than by source. In the PTs,
event filtering is done by the Controller Process,
which is therefore involved in all event trans-
portation.

3.2 L4Linux

L4Linux is a port of the Linux kernel to an L4 envi-
ronment. It uses L4 kernel primitives as well as the
basic software environment (L4Env) running on top
of the microkernel to provide the necessary environ-
ment for running a Linux kernel. These services in-
clude communication primitives, execution contexts,
interrupts, memory services and the like. For exam-
ple, L4Linux queries the memory server for a chunk
of memory that it then uses as the main memory.

Internally, the L4Linux kernel is divided into sev-
eral threads within the same address space. The
main thread runs the actual kernel code. L4 re-
quires that threads that want to receive interrupt
messages need to attach to an interrupt. Conse-
quently, each interrupt that is used by L4Linux re-
quires an interrupts thread. These threads execute

4



bottom half code and then notify the main thread.
Besides the main thread and interrupts threads, spe-
cial L4Linux drivers may start own threads to receive
asynchronous notifications. Additionally, L4Linux
has a so called tamer thread that is used to seri-
alize access to critical sections in case of contention.
There are additional management threads as well as
service threads of L4Env.

3.3 Layers

From the monitoring point of view we have four dif-
ferent layers in our System: the microkernel (L4 Fi-
asco in our case), basic microkernel programs, a para-
virtualized Linux kernel, and Linux programs. We
support monitoring in those layers and describe this
in the following.

For monitoring kernel and system behavior, we
use Fiasco’s built-in tracebuffer, which can be config-
ured at runtime. We access the tracebuffer as shared-
memory region and read events from it containing
kernel entries. The tracebuffer supports a set of stan-
dard events, such as context switches, inter process
communication (IPC), page faults, and so on, which
can be selectively activated. The kernel as an event
source is sometimes important as we cannot atom-
ically take timestamps in user-space directly before
or after IPC or other system calls. Using the ker-
nel here eases accounting. Also, it is very convenient
to use the kernel as event source for gaining a gen-
eral system view as sensors in only one place have to
be activated. The Ferret framework provides the
tracebuffer as a normal event list sensor to monitors.

Basic microkernel programs, with our without
real-time properties, can be monitored with normal
Ferret sensors. Ferret uses two L4Env services
for setting up sensors: names (name server) and
dm phys (physical memory manager). The sensor
placement in the virtual address space is handled by
Ferret if the L4Env region mapper is available or
it can be specified manually. When instrumenting
names and dm phys themselves with Ferret sen-
sors, we have bootstrapping problems, naturally. In
names, we solved this by deferring sensors setup un-
til dm phys registered at names. For dm phys we
will use a preinitialized sensor to circumvent cyclic
dependencies.

We could have prevented those two special cases
by reimplementing a lot of functionality of names
and dm phys in the Ferret framework but decided
not to do so, as the gains for all this code duplication
seemed small.

The current version of the L4Linux kernel is
an L4Env program, so monitoring it with Ferret

works normally. Additionally, the L4Linux kernel
sets up one event list sensor for its user-space pro-

grams and pages the sensor’s memory into their ad-
dress spaces on demand. It acts as a proxy between
Ferret’s sensor directory and L4Linux user-space
programs, as those programs are normally not al-
lowed to contact other L4 programs. Another ad-
vantage of this architecture is that only one entity
manages the virtual address spaces of Linux user-
space programs, the L4Linux kernel.

3.4 Sensor types

To address the different problem domains we are fac-
ing and to minimize intrusiveness, we provide differ-
ent types of sensors in Ferret. The most simple
sensor is a counter type we call scalar. This type is
basically used for counting the occurrence of events,
for example, the number of deadline misses in a time
interval for a real-time task.

The next sensor type is the histogram. His-
tograms can be accessed either as arrays of scalars
(using the bin number) or as real histograms with
offsets and index scaling. Overflows and underflows
are counted additionally. Amongst other things, we
use histograms for acquiring the resource usage for
various routines in the system, for example, the video
and audio decoding steps in our video player Verner
[17]. We use these numbers directly for CPU time
reservation in Verner. In L4Linux, we use the array
mode of the histogram sensor for counting the calling
frequencies of system calls [4].

Histograms are not restricted to one dimension,
but can have multiple dimensions and layers.

The most general form of sensors are event lists.
Events can be posted from all positions in the sys-
tem and can contain arbitrary data. All events are
timestamped and can therefore be totally ordered
per processor. Using event lists is useful when early
aggregation is not possible, for example, if the way
to aggregate is yet unknown or if the time relations
of events are important.

In the general case, event lists are read from and
written to by several parties concurrently, that is,
there might be several producers in different address
spaces. Our event list sensor is based on the Concur-
rently Invocable Sensors from [16] and uses lock-free
algorithms for achieving synchronization.

We defined a common event header denoting the
origin and type of events, followed by custom data.
We describe the data layout for the custom parts of
all events in the Magpie toolchain (cf. Figure 2).

3.5 Porting kProbes

The kProbes mechanism in Linux allows to insert
trap points at arbitrary positions in the kernel.
When the execution flow passes such a point, a

5



0 Kernel

#type context_switch 10

{

context, ItemULong

eip, ItemULong

pmc1, ItemULong

pmc2, ItemULong

_pad0, ItemChar

_pad1, ItemChar

_pad2, ItemChar

_pad3, ItemChar

dest, ItemULong

dest_orig, ItemULong

kernel_ip, ItemULong

space, ItemULong

sched_cont, ItemULong

from_prio, ItemULong

}

(a) Context switch event

1 L4LXK

#type atomic_begin 2000

{

l4tid, ItemULongLong

}

#type atomic_end1 2001

{

l4tid, ItemULongLong

}

#type atomic_end2 2002

{

l4tid, ItemULongLong

}

(b) Atomic blocks

Figure 2: Exemplary data layout description for microkernel
context switch events with detailed information (a) and
simple wrapping events for atomic sections in the L4Linux
kernel, containing just a thread ID (b)

trap is raised and kProbe trap handler functions are
called.

Having kProbes available in L4Linux allows us to
use legacy Linux instrumentations. The SystemTAP
project [5] aims at providing a scripting language
to create dynamic instrumentation. Its developers
focus on kProbes and there is already a large range
of instrumentations for common problems available.

Installing a kProbe works by saving the instruc-
tions at the kProbe point to a private area and over-
writing the point to be probed with the shortest
possible instruction that causes a trap or exception.
When the point is hit, the kProbe module calls user
defined handlers. Then, the original code, saved in
the private area, is executed in single step mode and
finally execution is resumed after the kProbe.

The i386 kProbes implementation uses the one
byte opcode INT3 as the trapping instruction. How-
ever, INT3 is also used to call the Fiasco kernel de-
bugger. We replaced the INT3 opcode in kProbes
with HLT, that also causes a general protection fault
when called in user mode. HTL is also a good choice
as it is definitely not used in the Linux kernel other-
wise, except in the idle loop, which we implemented
differently in L4Linux. Other alternatives would have
been CLI or STI, but L4Linux would then be re-
stricted to run without full I–O privileges, which is
convenient sometimes.

We also changed the exception handler within
L4Linux such that an exception on HLT is handled
by kProbes. Additionally, the instruction pointer of
the exception needed to be adjusted, as for the HLT
instruction it points onto the instruction, whereas
for INT3 it points after the instruction.

4 Application scenarios

In the following, we describe the application of the
Ferret monitoring framework to typical scenarios
we encountered while working with our system. We
chose the scenarios to highlight different properties
of the framework that we think are important.

4.1 Resource usage estimation

The first application scenario is centered around our
video player Verner [17]. In [8] we describe how we
achieve real-time guarantees for video decoding. In
short, we adapt the quality of the post-processing
step and thereby change its CPU-time demand. We
count the number of deadline misses over the previ-
ous n frames and adapt the post-processing quality
accordingly. We can either lower the quality (if many
deadline missed occurred), keep it the same (if we
had only few misses), or raise it (if there were none).
We can tolerate several deadline misses because we
buffer some frames.

Interesting from the runtime monitoring perspec-
tive is that we only need to embed very little sensor
code into the application (the time slice overrun han-
dler). Thereby, we can completely separate the adap-
tation decision from the functional core of the video
decoder. We only need a simple scalar sensor in the
decoding component.

We also augmented Verner with histogram sen-
sors for measuring the CPU time demand for certain
routines, most importantly, the video decoding step,
post-processing video frames, and the audio decod-
ing step. We can view the distributions live, while
the video is playing for observing system behavior
and we use collected execution time distributions for
admission and scheduling of the whole video player
application.

We also used event list sensors for verifying buffer
fill levels between components in the decoder chain
and for collecting information about the development
of the decoding times over time (or stream position).

4.2 Resource usage modeling

With DOpE [6], Drops has a real-time display com-
ponent, which can guarantee refresh rates for a re-
quested rectangular area. DOpE keeps track of av-
erage and worst-case times for copying pixels from a
shared-memory representation to graphics memory.
Time estimation for copy routines is currently based
on area size (pixel count) to be copied.

To verify this estimation we instrumented the in-
ner copying routing of DOpE and took the time in
CPU cycles for copying rectangular areas.

6



for (j = dy + 1; j--; ) {

/* copy line */

d = (u32 *)dst; s = (u32 *)src;

for (i = dx + 1; i--; ) *(d++) = *(s++);

src += scr_width;

dst += scr_linelength;

}

We compute the time per pixel in place and store
the information in a two-dimensional histogram in-
dexed by the width and height of the rectangle. The
histogram has also two layers, whereas the first layer
contains the accumulated copy time, and the sec-
ond layer counts the number of occurrences for this
width-height combination.

We directly aggregate the information online to
minimize the memory load in this experiment as we
are a taking huge number of measurements. We cre-
ate redraw requests with uniformly distributed width
and height between 1 and 400 pixels using a small
benchmark program. We also measure each point at
least 100 times and compute average copy times.

We took measurements on the following two ma-
chines.

Machine A has an AMD Duron processor with
1,200 MHz. First and second level caches have
64 byte cache lines. The machine has a 64 kB
Level 1 Instruction-Cache (2-way associative), a
64 kB Level 1 Data-Cache (2-way associative),
and a 64 kB Level 2 Unified-Cache (8-way asso-
ciative).

Machine B has an older Intel Pentium-Pro with
200 MHz. First and second level caches have
32 byte cache lines. The machine has an 8 kB
Level 1 Instruction-Cache (4-way associative),
an 8 kB Level 1 Data-Cache (2-way associative),
and a 256 kB Level 2 Unified-Cache (4-way as-
sociative).

In the experiments depicted in the Figure 3 we see
that the assumption of fixed cost per pixel is a viable
approximation for a large range of rectangular sizes.
However, we also see diversions in several places,
which we discuss in the following:

1. The mountainous area on the left side results
from copy operations on rectangles with a small
width. The huge increase in copy time per pixel
for very short pixel rows probably stems from
computing the pixel row addresses for source
and destination buffer.

2. There are small trenches parallel to the height
axis, corresponding to the cache line size. Copy-
ing whole-numbered multiples of cache lines
sizes reduces overheads per pixel.

3. There is a valley in the front corresponding to
the total processor cache size. The measure-
ments depicted in the Figures 3a, 3b, and 3c

were taken with a horizontal screen resolution
of 1024 pixels, resulting in aliasing effects with
the processor cache size. Effectively, every cache
color1 is bound to a small set of pixel columns.
This leads to trashing the own cache set when
copying areas with more than a certain height,
independently of the width of the rectangle.
Machine A has a data cache of 128 kB (L1 and
L2 together as the cache hierarchy is exclusive).
Running with a graphics mode of 1024 pixel per
line, with 2 bytes per pixel results in a cache-
trashing height of 64 lines, computed as follows:

128 kB/(2
B

pixel
∗ 1024

pixel

line
) = 64 lines (1)

This is also exactly what we see in Figures 3a
and 3b.
Compare Figures 3b and 3d. The most promi-
nent difference between Figures 3b and 3d is
that data for Figure 3d was taken with an
800x600 resolution, whereas data for Figure 3b
was measured with an 1024x768 resolution. In
Figure 3b, the cache trashing line can be clearly
seen (parallel to the width axis), whereas in Fig-
ure 3d it is gone, as their is no aliasing between
cache colors and pixel columns.
Machine B has an effective data cache of 256 kB
(maximum of L1 and L2 as the cache hierar-
chy is inclusive). Using equation 1 with other-
wise equal settings we compute a cache-trashing
height of 128 lines that can also be seen in Fig-
ure 3c.

For comparison we also ran our experiments with
memory type range registers (MTRR) disabled, as
this was the initial situation when DOpE was cre-
ated in the year 2002. We see that enabling MTRRs
for the framebuffer area results in an approximately
three-fold speedup (compare Figures 3a and 3b).
However, the relative differences in the histogram
have grown with enabled MTRRs as well (compare
the mountainous area on the left with the height of
the flat area in the middle and right side), making
the fixed-cost-per-pixel assumption questionable.

Also, in the measurements taken on machine B
the differences in the copy times per pixel contrast
even stronger as depicted in Figure 3c.

From the experiments we see the typical opti-
mization for throughput (e. g., using MTRRs) hurts
predictability and thus might create problems for
real-time applications. However, an execution time
model based not only on the area but on the length
of both rectangle sides seems feasible from the mea-

1A cache color is the set of cache lines that can cache the
same physical address.

7



(a) Basic experiment with MTRRs disabled. (b) For this experiment we used MTRRs to enable caching
for the framebuffer region, which results in an approxi-
mately three-fold speedup.

(c) Also with MTRRs enabled but on machine B, the mem-
ory access profile looks quite different.

(d) The same setup as in Figure 3b but the resolution is re-
ducded to 800x600, eliminating the cache aliasing effect.

Figure 3: Depicted is the time for copying a single pixel to graphics card memory, depending on the width (horizontal axis)
and height (axis “into” the paper) of the rectangular area copied. The width and height axes range from 1 to 400 pixels
each, the time axis shows relative times for each machine (so you can compare 3a, 3b, and 3d quantitatively, which were
measured on machine A)

surements shown. Model calibration to a target ma-
chine could happen at component deploy time, or,
if only few measurements are required, at startup
time. Also, refining the model online seems practical
for soft–real-time problems.

4.3 Taming L4Linux

In this section we will describe one specific problem
we encountered with L4Linux, its cause, and a way
how to identify the problem now and in the future.
This shall demonstrate the utility of our framework
for finding timing bugs in such complex components
as operating system kernels.

Native Linux uses CLI and STI instructions to
protect critical sections by disabling and enabling in-
terrupts. L4Linux uses a replacement for CLI–STI as
it runs without kernel privileges in user-mode where
these instructions are not allowed. CLI–STI is re-
placed with a mutex, which is taken using atomic
instructions in the noncontention case. In the con-
tention case, a blocking IPC is sent to one synchro-
nizing tamer thread T. T runs on the highest pri-
ority inside the L4Linux kernel, thereby it is able to
execute its code atomically with respect to all other

L4Linux kernel threads. When leaving a critical sec-
tion and another thread wants to enter the critical
section, the leaving thread also notifies T that, in
turn, wakes up one waiting thread according to its
queuing policy. Again, the underlying assumption
here is that by running T on the highest priority
inside L4Linux it can run its code atomically with
respect to all other L4Linux threads.

L4 kernels have a feature called donation, which
optimizes a common communication case, where a
client sends a short request to a server, which imme-
diately processes it and returns the result. However,
the server in this scenario runs with the time slice
and the priority of the client while processing the
request.

Some L4Linux driver stubs communicate with ex-
ternal servers via IPC, for example, for using exter-
nal hardware drivers. The external server’s worker
threads may run on the same priority or even on a
higher priority than the tamer thread inside L4Linux
as both are separate subsystems.

In our case one L4Linux-internal stub driver
thread A was notified by an external thread W run-
ning on the same priority as L4Linux’s tamer thread.
By notifying A, W temporarily transfered its priority

8



to A. As a consequence, although extremely rarely, T
was interrupted in its atomic sequence when A itself
wanted to enter the CLI–STI critical section.

After identifying this problem we wrote a mon-
itor that detects this problem at runtime. There-
fore, we wrapped the tamer’s atomic sequence with
start–stop events. Additionally we enabled logging of
context switch events in the microkernel. The mon-
itor checks for the absence of the following condi-
tion: There must never be a context switch to an
L4Linux kernel thread (except the tamer thread it-
self) in-between a start event and a stop event for
the atomic sequence. The monitor also keeps a his-
tory of the previous n events for later visualization
and debugging of the problem. Figure 4 shows such
a situation.

After we fixed the problem, this test can now
be run after any changes we make to L4Linux. The
bug would be hard to identify with other means, as
it requires a whole-system view as events from sev-
eral threads and the kernel are required and their
exact order matters. Also, the condition is checked
completely outside of the L4Linux kernel’s address
space, which makes the checking immune to, for ex-
ample, memory corruption by other potential bugs
in L4Linux.

4.4 Virtual and native Linux

When (para-)virtualizing operating system kernels,
such as Linux, it is important to detect behavioral
changes. This applies not only to the functional cor-
rectness of the virtualized version but also to non-
functional properties, such as speed and memory re-
quirements of the virtualized version.

We compared L4Linux to native Linux running
comparably configured kernels. We used kProbes
to track control flow inside the Linux kernel. For
Drops, we used kernel-level instrumentation to
track scheduling information. In native Linux, an ad-
ditional kProbe was used for this purpose. To reuse
the instrumentation code from L4Linux within native
Linux, we implemented a Linux kernel module that
implements parts of the Ferret framework.

One of our experiments showed a difference in
scheduling behavior between L4Linux and native
Linux within the vfork system call. vfork is a spe-
cial version of fork that assumes that only little work
has to be done between fork and exec (or exit).
Therefore, parent and child can share the same ad-
dress space (including the stack), which saves the
overhead of copying the parent’s page tables. The
parent process has to be blocked to prevent address
space corruption until the child calls exec or exit.

While observing the behavior of vfork in
L4Linux, we found, that after the system call has

pid,80

tid,13.4

cpu,0

tid,1b.0

pid,139

tid,13.2

tid,1b.1

l4lxk/forkinst_retfork

l4lxk/forkinst_wakeup

l4lxk/sys_vfork

l4lxk/sys_waitpid

l4lxk/sys_exit_group

l4lxk/forkinst_allocpid

Figure 5: Depicted is a vfork system call, issued by pid

80 (tid,1.b0). After the L4Linux kernel (tid,13.4) returned
from the fork routine (l4lxk/forkinst retfork), the par-
ent process (tid,1.b0) is scheduled again for a short time,
before finally the child (tid,1b.1) is scheduled.

been handled by the L4Linux server, the Fiasco ker-
nel switches back to the parent task before executing
the child (see Figure 5). We further investigated this
behavior, because this looked like a serious bug in ei-
ther L4Linux or the Fiasco kernel. As it turned out,
this is only an optimization artifact in Fiasco, never
visible to user-space. Fiasco indeed switches to the
parent process, but only to find out that it is blocked.
The parent process was still in Fiasco’s ready queue
but flagged as blocked. Fiasco uses an optimization
called lazy queuing that does not always remove IPC
senders from the ready queue but marks them with a
flag. Often, the IPC receiver answers fast and Fiasco
can directly switch back to the sender, thereby sav-
ing two queue operations. vfork triggers the other
case, where the parent was flagged and has now to
be removed from the ready queue.

Although this bug turned out to be a false pos-
itive, this example shows that Ferret can be very
helpful in finding and debugging behavioral differ-
ences between native and (para-)virtualized variants
of Linux. Timing information from the events can
also be used to point out performance differences.

When evaluating performance, the overhead in-
duced by monitoring needs to be considered in order
to measure correct values. The two main sources of
intrusion are:

1. The overhead caused by measuring and stor-
ing data, and calling functions provided by the
monitoring framework. We used microbench-
marks, executing thousands of monitoring calls
in a row, to determine the minimum time that
is needed to run these functions. Additionally,
we used macrobenchmarks, executing real appli-
cations, to measure the average and maximum
effect monitoring calls have on the system.

2. The cache misses that are caused because

9



tid,a.6

cpu,0

tid,11.9

tid,11.4tid,a.5

tid,11.3

tid,11.5

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

ke
rn

el
/s

w
itc

ht
o

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

l4
lx

k/
at

om
ic

_b
eg

in

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

l4
lx

k/
at

om
ic

_b
eg

in

l4
lx

k/
at

om
ic

_e
nd

2

l4
lx

k/
at

om
ic

_e
nd

1
ke

rn
el

/s
w

itc
hf

ro
m

ke
rn

el
/s

w
itc

ht
o

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

l4
lx

k/
at

om
ic

_e
nd

1

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

ke
rn

el
/s

w
itc

hf
ro

m

l4
lx

k/
at

om
ic

_b
eg

in

ke
rn

el
/s

w
itc

ht
o

ke
rn

el
/s

w
itc

hf
ro

m

ke
rn

el
/s

w
itc

ht
o

Figure 4: Visualization of the atomicity problem with the tamer thread (11.3). You see three atomic sections wrapped in
the events: l4lxk/atomic begin and l4lxk/atomic end. The first of the three sections is interrupted with context switches
to thread A.5, A.6 (both in the external driver), and 11.9 (an L4Linux internal worker thread). The context switch to 11.9
violates the atomicity condition as the tamer thread is preempted by a normally lower prioritized thread.

the above mentioned monitoring calls overwrite
cached data that is used by the instrumented ap-
plications. To measure the cache overhead, we
again conducted micro- and macrobenchmarks
and used hardware performance counters to de-
termine the number of cache misses.

By knowing the intrusiveness of instrumentation and
the monitoring framework, we are able to reassess
obtained timing data and approximate the real per-
formance of the monitored system [4].

4.5 Whole-system view

To illustrate the continuity of the Ferret frame-
work we demonstrate how to follow the control
flow from a L4Linux user-space program (arping),
through the L4Linux server, further on to an exter-
nal L4 network server (ORe), using different and ad-
equate means to place sensors in the different layers
of the system.

To visualize the control flow for this scenario, we
used the following sensors:

1. The arping program running in L4Linux was
manually instrumented to produce events before
sending a request, before listening for an answer,
and after processing the answer.

2. The L4Linux kernel was instrumented using a
kernel module installing kProbes at the system
call entry, the send function, and the receive

function of the L4Linux ORe driver stub.

3. Drops applications usually provide an IPC in-
terface to other components of the system. This
interface is typically described using CORBA
IDL. The Drops IDL Compiler (Dice, cf. [1])
translates this description into IPC code. We in-
strumented the server-side IPC code of the ORe
network switch using a tracing plugin for Dice.

4. Information about context switches were ob-
tained from the Fiasco kernel using events writ-
ten to the Fiasco trace buffer.

Extracts of the resulting trace can be seen in Figure
6. Figure 6a shows how the ping request is sent from
a user-space task to the L4Linux server (tid,12.4),
which then hands the packet over to the ORe network
server. Figure 6b shows the answer coming in. The
ORe IRQ thread (tid,8.5) notifies the server thread
(tid,8.8) and the server thread then calls back the
already waiting L4Linux driver stub (tid,12.15). In
Figure 6c we see the ping application doing a select

system call on the socket and finally receiving the
ping reply.

The example demonstrates that with the help of
Ferret we are able to instrument and monitor ap-
plications at different system layers and use the ob-
tained data as a basis for evaluating whole systems.
The demonstrated approach is not constricted to our
research system but may be applied to other lay-
ered architecture as well. For example, other virtual
machine setups will require event from the low-level
hypervisor, medium-level virtual machine monitors,
and high-level guest operating systems and applica-
tions as well. Ferret provides a framework to cre-
ate, transport, and process these events.

5 Conclusion

We created a monitoring system, solely based on
shared-memory regions, not using any system calls in
normal use. This results in very fast and predictable
logging suitable for real-time and high-performance
applications. We also achieve independency from the
actual operating system the monitored process runs
in, indicating the applicability in virtualization sce-
narios, as we can use this technique in all layers of
our system, starting from the underlying microker-

10



tid,8.8

pid,92

tid,1b.0

cpu,0

tid,12.4

tid,NIL
l4

lx
k/

ne
tp

ro
be

_l
4o

re
_s

en
d_

st
ar

t

l4
lx

k/
sy

s_
w

rit
e

di
ce

/o
re

_w
or

ke
r_

se
rv

er

l4
lx

k/
sy

s_
io

ct
l

l4
lx

u/
ar

pi
ng

_s
ta

rt

l4
lx

k/
sy

s_
so

ck
et

ca
ll

(a) Ping start

tid,8.8

tid,12.15

pid,92

cpu,0

tid,8.5

di
ce

/o
re

_c
lie

nt
l4

lx
k/

ne
tp

ro
be

_l
4o

re
_r

ec
v_

st
op

di
ce

/o
re

_w
or

ke
r_

se
rv

er
l4

lx
k/

ne
tp

ro
be

_l
4o

re
_r

ec
v_

st
ar

t

(b) Ping incoming

pid,92

tid,1b.0

cpu,0

tid,12.4

tid,NIL

...

(7
.5

m
s)

l4
lx

k/
sy

s_
se

le
ct

l4
lx

u/
ar

pi
ng

_s
to

p

(c) Ping done

Figure 6: Visualization of the system interaction in response to the ping request by the application. Depicted is only the send
part wrapped in the two user-land events l4lxu/arping. You see the interaction from the user-space program (pid 92) with
the L4Linux server (task 12), where 12.4 is the main server and 12.15 being the driver stub communicating with the ORe
network server. The network server is task 8.

nel, plain microkernel programs, real-time applica-
tions, and our para-virtualized Linux kernel, as well
as Linux user-space applications. It is extremely
helpful for continuous monitoring to use only one
mechanism in all places and to be able to collect all
monitoring data with one framework.

Runtime monitoring of real-time systems is pos-
sible and useful. However, we find that one size does
not fit all. The problem range is just too large for
a generic solution with one sensor type. Even if one
could obtain monitoring data at zero cost (CPU cy-
cles) the sheer amount of data would have to be han-
dled. Therefore, we applied early aggregation in the
forms of histogram and scalar sensors to reduce the
amount of data to be stored, transported, and evalu-
ated later on. At first glance this might sound coun-
terintuitive as aggregation itself does cost some CPU
time in the monitored process, but the whole system
will be relieved of a lot more load that way, result-
ing in lower overall intrusiveness. Currently, the user
must decide whether and how to aggregate.

6 Outlook

In microbenchmarks, the event list as the most com-
plex sensor can create events with an approximate
overhead (depending on the sensor configuration and
the payload) of about 200–300 cycles on an 1.2 GHz
AMD Duron. The biggest costs are the copying of
the payload, taking timestamps (with rdtsc), and
synchronization against concurrent writers with the
help of cmpxchg8b instructions.

Specifying the intrusiveness in a larger scale
makes only sense in the context of an observer, ei-
ther a human judging the system’s behavior or ma-
chine parts evaluating metrics. For a server environ-
ment, the most important metric might be through-

put, so intrusiveness could be defined over the change
in throughput. For a real-time capable video player,
the number of deadline misses is important, so the
change in this fraction is the intrusiveness. In a hard
real-time system, there should be no new deadline
misses — here the intrusiveness is binary. For a desk-
top system where humans might not notice small
changes but penalize larger ones, responsiveness is
important. So, intrusiveness might not be linear with
additional CPU time required. We will next work on
defining metrics for certain application classes and
verify our framework within these metrics.

Currently, events can be totally ordered per pro-
cessor, as we use processor timestamp counter, which
are strictly monotonic. Totally ordering event across
several processors would require perfectly synchro-
nized clocks, which probably cannot be achieved for
such high-resolution time sources as timestamp coun-
ters. Instead, we envision to a use partial ordering
relation by taking two local timestamps for cross-
processor communication. We also plan to support
different timestamp source — for example, logical
clocks which might be cheaper (just a counter in
memory) — for situations where not the accurate
timing but only the ordering is important.

References

[1] Ronald Aigner. DICE Documentation. http:
//os.inf.tu-dresden.de/dice/.

[2] Paul T. Barham, Austin Donnelly, Rebecca
Isaacs, and Richard Mortier. Using magpie for
request extraction and workload modelling. In
Proceedings of the 6th USENIX Symposium on
Operating Systems Design and Implementation
(OSDI), San Francisco, CA, 2004.

11



[3] DROPS Team. DROPS - The Dresden Real-
Time Operating System Project. http://os.inf.
tu-dresden.de/drops/.

[4] Björn Döbel. Request tracking in DROPS. Mas-
ter’s thesis, TU Dresden, June 2006.

[5] F. Ch. Eigler, Vara Prasad, William Cohen,
Hien Nguyen, Martin Hunt, Jim Keniston, and
Brad Chen. Architecture of systemtap: a
Linux trace/probe tool. http://sourceware.org/
systemtap/archpaper.pdf, 2005.

[6] Norman Feske and Hermann Härtig. Demon-
stration of DOpE — a Window Server for Real-
Time and Embedded Systems. In 24th IEEE
Real-Time Systems Symposium (RTSS), Can-
cun, Mexico, December 2003.

[7] Steffen Göbel, Christoph Pohl, Ronald Aigner,
Martin Pohlack, Simone Röttger, and Steffen
Zschaler. The COMQUAD component con-
tainer architecture. In Proc. 4th Working
IEEE/IFIP Conference on Software Architec-
ture (WICSA), Oslo, Norway, June 2004.

[8] Hermann Härtig, Steffen Zschaler, Mar-
tin Pohlack, Ronald Aigner, Steffen Göbel,
Christoph Pohl, and Simone Röttger. Enforce-
able component-based realtime contracts —
Supporting realtime properties from software
development to execution. Springer Real-Time
Systems Journal, 2006.

[9] IEEE. IEEE Std 1003.1-2004 Standard for
Information Technology — Portable Operating
System Interface (POSIX) System Interfaces,
Issue 6. IEEE, New York, NY, USA, 2004.

[10] R. Krishnakumar. Kernel Korner: Kprobes—a
Kernel Debugger. Linux J., 2005.

[11] Adam Lackorzynski. L4Linux Porting Opti-
mizations. Master’s thesis, TU Dresden, March
2004.

[12] Richard J. Moore. A Universal Dynamic Trace
for Linux and Other Operating Systems. In Pro-
ceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, Berkeley, CA,
USA, 2001.

[13] Ryan Myers. Funny, It Worked Last
Time: Event Tracing for Windows (ETW).
http://blogs.msdn.com/ryanmy/archive/2005/
05/27/422772.aspx, May 2005.

[14] Dushyanth Narayanan. End-to-end tracing con-
sidered essential. In Proceedings of High Per-
formance Transaction Systems – Eleventh Bi-
ennial Workshop (HPTS ’05), Asilomar Con-
ference Center, Pacific Grove, CA, September
2005.

[15] Martin Pohlack, Ronald Aigner, and Her-
mann Härtig. Connecting Real-Time and
Non-Real-Time Components. Technical Re-
port TUD-FI04-01-Februar-2004, TU Dres-
den, 2004. http://os.inf.tu-dresden.de/papers
ps/tr-rtnonrtcomp.pdf.

[16] Torvald Riegel. A generalized approach to run-
time monitoring for real-time systems. Master’s
thesis, TU Dresden, 2005.

[17] Carsten Rietzschel. VERNER – ein Video
EnkodeR uNd playER für DROPS. Master’s
thesis, TU Dresden, 2003.

[18] Henrik Thane. Monitoring, Testing and Debug-
ging of Distributed Real-Time Systems. PhD
thesis, Royal Institute of Technology, Stock-
holm, May 2000.

[19] Karim Yaghmour and Michel Dagenais. Mea-
suring and characterizing system behavior using
kernel-level event logging. In USENIX Annual
Technical Conference, General Track, 2000.

12


