
Cooperating Resource Managers

Hermann Härtig Lars Reuther Jean Wolter
Martin Borriss Torsten Paul

Dresden University of Technology
Department of Computer Science

01062 Dresden, Germany
fhaertig,reuther,jw5,borriss,paulg@os.inf.tu-dresden.de

Abstract

Operating System designers currently face two major
challenges. One is the coexistence of time-sharing and dy-
namic real-time components on a single machine and even
in the same application. The other is that many acceleration
techniques (e.g. caches) used in modern hardware architec-
tures work very well for the average case, but not for the
worst case which counts for real-time systems.

This scenario is addressed by DROPS, the Dresden Real-
time OPerating System. DROPS uses resource managers
which have been and still are being built in an ad hoc manner
and that allow the reservation of resources, the enforcement
of the reservations and the usage of unreserved or reserved
but unused resources for other, non-real-time applications.
While these resource managers have been built and work very
well and are well published (see e.g. [5, 9, 3]), they all have
their own, unique ad hoc interface. This paper describes a
more unified, systematic approach that is applicable at var-
ious system levels and allows a systematic construction of
applications using cooperating resource managers.

1 Introduction
Resource managers are building blocks for systematic, re-

source aware design and implementation of systems requir-
ing some form of timeliness. A rather common form of time-
liness is often calledQuality of Service for media applica-
tions. In these systems, applications often consist of com-
ponent chains processing a stream of data in real time, e.g.
a chain consisting of a file systems that produces the data
stream, an MPEG decoder and a video display. The main ob-
jective of the DROPS project is to provide such components
as resource managers.

The general view taken is that components provide re-
sources and use resources. To achieve timeliness in providing
resources, the used resources must be provided in time. Since

resources are limited they need to be reserved in advance to
be made available in time.

The amount of resources needed to provide timeliness (or
Quality of Service) varies. To guarantee timeliness, resources
must be provided for the worst case. Unfortunately, the worst
case / normal case ratio is rather bad

� for many applications, especially in the media applica-
tions and

� in cheap, but powerful hardware (caches, busses)1.

Under these circumstances, a reservation for the worst case
can result in very high unproductive blocking of resources.
Fortunately, many applications, especially in the media appli-
cations area, exhibit an behavior that they can adapt to occa-
sional violations of timeliness, e.g., by temporarily reducing
the quality of a presentation.

This leads to a design process:

� provide guarantees for the hard core functionality

� provide promises for the normal case behavior and noti-
fication mechanisms in case the promises cannot be hon-
ored

� try to get the worst case as close as possible to the nor-
mal case (good worst case/normal case ratio) without
thereby punishing the normal case too much.

The remainder of this paper is organized bottom up.
Firstly, some examples are given of resource managers that
have been built for DROPS. Next, a closer view is taken at
resource aware design and the resulting requirements for the
interfaces of resource managers are given. After discussing
an example, some conclusions are drawn finally.

1Measurements done by the DROPS group show that for SCSI disks that
situation is currently getting worse: on an IBM DGVS disk drive, an average
case bandwidth of 15 MB/s can be achieve in contrast to only 2 MB/s under
worst case assumptions



2 Examples of Resource Managers

Fig. 1 shows the principle architecture of the DROPS sys-
tem. It contains on the left side L4Linux [5, 6], a version of
the Linux operating system that runs on top of a micro-kernel
and supports conventional non-real-time applications. It gets
all resources that are not reserved for real-time components
which are shown on the right side of the figure.

Applications

Time-SharingApplications

Time-Sharing

Realtime Application
Realtime Application

L4Linux

CPU / Main Memory / Caches

Microkernel

RT Filesystem

SCSI Driver

Realtime Application

L4-ATM

ATM Driver

Time-Sharing

Applications

Figure 1. The DROPS Architecture

We introduce the general concept of resource managers by
describing some of the resource managers in DROPS and the
role they play in the DROPS architecture:

� The cache partitioning resource manager [9]
allows to partition caches and to assign the resulting par-
titions either to real-time components or to L4Linux.
This technique allows to eliminate the penalty caused
by cache misses in level two caches which otherwise
would be caused by context switches. This is especially
important to bound worst case execution times for real-
time processes that run besides other application pro-
cesses. E.g., worst case execution times for processes
like drivers, that have to maintain very short response
times in spite of cache flooding as induced by L4Linux
and its application, can be determined without taking
cache floods into account. Measurements in [9] have
shown that this may lead to significantly lower worst
case execution times.

� L4ATM [3]
allows to reserve bandwidth for some clients while leav-
ing the remainder of the bandwidth to L4Linux and
other clients. On admission, L4ATM computes the
amount of resources (buffer and CPU-cycles) that are
needed for the requested bandwidth, requests their reser-
vation from the underlying resource managers for mem-

ory and CPU, and provides the reserved bandwidth us-
ing these reserved, lower level resources.

� The CPU-scheduler
(which is still under construction) allows the reservation
of resources in two levels, one nominating the resources
that are effectively needed and are guaranteed, the other
nominatingnice to have cycles. An interface is provided
to notify clients (i.e., threads) in the event that they can-
not be given thenice to have partition of the resources.
A simplified example is given in Fig. 2.

reserve(period, cycles, high priority);
reserve(period, cycles2, low priority);

while (!end) f
if (begin period(call back func, event) f

decode picture();
g else f

skip picture();
g

g

release reservation();

void call back func(reason) f
if (reason == TIME) f

reduce quality();
g

g

Figure 2. Use of the scheduler as a resource
manager

� The SCSI driver
again allows to reserve bandwidth. The reservation
is enforced by adding time stamps to real-time disk
requests. Then, disk scheduling uses standard disk
scheduling algorithms as long as all timed requests are
foreseen to be executed in time. Only when one or more
disk requests are endangered to be late, their execution
is reordered to guarantee their deadline. Hence, if suffi-
cient work ahead is planned and the overall load is kept
below the maximum sustainable bandwidth, no penal-
ties are induced by the real-time capabilities of the SCSI
driver. Admission for real-time clients is done under
worst case assumptions.

Other examples, which are under construction at the time of
this writing, include a video display manager, a file system
and a manager for PCI bus usage.

Resource managers and other real-time components co-
operate in two ways. One is the mapping of requested re-
sources of one level to resources of the next lower level. E.g.,
L4ATM heuristically computes needed CPU-cycles from the
requested bandwidth and packet size. This can be viewed

2



as vertical interaction. The other — horizontal interaction
— occurs when actually passing a periodic stream of events
through (mostly) a chain of real-time components, e.g., as
shown in Fig. 3. The arrows indicate the direction of the flow
of events. The streams of events must exhibit a certain behav-
ior with regard to bandwidth and the jitter, which is defined
as the maximal deviation from an exactly periodical stream.
The properties of the stream are described using a set of pa-
rameter [4] and is part of the contract, that is made during the
admission of a new client.

SCSI

L4ATM

Display

Memory / CPU

Application

File
System

MPEG
Decoder

Driver
ATM

Figure 3. A Real-time Scenario

These resource managers have been constructed intu-
itively and lack an uniformed interface. E.g., while the sched-
uler notifies its clients if the availability of resources changes,
which is considered a very important property for a large
class of real-time applications where the value of the time-
liness of events changes, the SCSI driver currently has no
such interface. The purpose of this paper is to demonstrate a
preliminary design of such an interface in the hope, that good
interaction at the workshop will shorten the time needed to
converge on a suitable interface.

3 Towards Interface Uniformity
Systems based on resource managers are set up in two

steps that closely resemble the steps as taken in the setup
of network connections with quality of service requirements,
but had to be generalized for other, non-network related re-
sources as well.

� In the first step (admission), all participating resource
managers, e.g., the file system, the MPEG decoder,
L4ATM and the Display manager in the example as

shown in Figure 3, are requested to reserve the required
resources at a certain priority; the requests are either
granted or refused by the resource managers. If refused,
the highest possible amount of resources is reserved and
returned as a parameter. During this first step, lower
level resource managers are queried in the same way if
such resources are needed (e.g., the SCSI, main mem-
ory, and CPU managers are queried by the file system).
If granted, the requested resources are reserved until
the second step occurs, but only for a certain maximum
of time. An entity is created to represent the reserved
resources, depending on the type of the requested re-
source. (E.g. in the case of the file system or L4ATM,
the entity is a thread, in case of the cache manager it is
a partition identifier.)
The resources can be requested with priorities. If in
worst case situations not enough resources are there to
grant all requested resources to all clients, then the pri-
orities determine which client gets which resources.

� In the second step, the participating components are ei-
ther started or aborted. The resources that are finally re-
quested (they may be less than the originally requested
reservations) and the upcall procedure for the event that
the reservations cannot be honored are provided as pa-
rameters. Where necessary, communication partners,
e.g. threads to send a stream of events to, are additional
parameters.

Two interesting challenges are posed in the usage and con-
struction of resource managers.

� Resource managers at different resource levels have dif-
ferent parameters to specify requested resources. An in-
teresting challenge is to systematically derive mappings
from higher level resources to lower level ones, this
mappings need to be done within resource managers.

� To reserve resources for the worst case will result in
enormously bad usage of resources. As a simple means
to support adaptation with regard to CPU usage, reser-
vation priorities have been introduced pragmatically,
where high priority reservations take precedence over
lower priority reservations and clients with low prior-
ity reservations are notified if these reservations cannot
be honored. However, the generalization towards other
resources and their use for smooth adaptation in appli-
cation remains to be discussed.

These challenges will be discussed in the following and some
properties of unified interface are derived.

3.1 Mapping of Resources
So far we have discussed two levels of resources, the low

level physical resources and the higher level resources such
as a file system and L4ATM. We describe how reservations

3



are requested for the higher level resources and how these
reservations are mapped to the lower level physical resources.

Resource managers like file systems and protocols interact
by forwarding periodic, jitter constraint streams of events. It
has been mathematically proven in [4] that numerous param-
eter sets used for the purpose of describing jitter constraint
event streams as e.g. the leaky bucket scheme used for ATM
[2] or the LBAP model used in [1] can be expressed by a
generalized model.

The model describes jitter constraint streams (slightly
simplified for this paper) using three parameters:

� RM : maximum bandwidth

� RA : average, sustainable bandwidth

� � : max deviation of a single byte fromtRA

The model of interaction is such that each component buffers
the data belonging to the input stream, while transforming it
to an output stream. Then, resource managers of this layer
commit to contracts of the form: if an input stream conforms
to an agreed description and if the requested resources are
provided by lower layers, then the output stream will conform
to another description as agreed upon.

An admission request may be of the following form. For
an input stream with known characteristics, an output stream
with some required characteristics is requested:

� RM
in ; R

A
in; �in

describes the input stream,

� RM
out; R

A
out; �out

is a description of the required output stream.

Then, under the assumptions

� that work in the resource manager is done by a dedicated
“worker thread”, and

� that the number of CPU cycles needed in a component2

is (roughly) known for a given bandwidth and a given
duration� :
Component:CPU(RA

in
; RA

out; �)

then the following resource requirements can be derived:

� the CPU-scheduling period�s for the worker thread
must be less or equal than�out.

� the memory needed to buffer the incoming stream is
Ra

� (�s + �in)

� the number of cycles needed per period is
Component:CPU(RA

in
; RA

out; �s)

This estimates lead to a much more systematic approach re-
garding the planning of the resource usage.

2For L4ATM such a formula is derived in [3]

3.2 Adaptation
For practical purposes, it makes sense to do adaptation at

several levels:

� Short term resynchronization
is used to adapt the data input and output interfaces of
linked components. E.g, the receiver of a stream can
force the sender to delay some events if it cannot keep
pace with the sender.

� Temporary adaptation
allows applications to react on temporary unavailability
of resources with lower reservation priorities. For each
resource, an upcall must be provided to notify clients of
resources about the unavailability or the new availabil-
ity. This is straight forward for CPU.
For resources providing mainly bandwidth it usually
does not make much sense to reduce the bandwidth.
E.g., if a file contains MPEG encoded data, a simple
reduction of bandwidth does not enable the MPEG de-
coder as a client to skip intermediate frames. It is also
not advisable to interpret a file format at the file system
to distinguish the priority of data within files. Hence, a
straight forward solution is to put high priority and low
priority data in different files and requesting bandwidth
for that data with different priorities. Then, if a certain
file temporarily cannot provide access with the promised
bandwidth, parts of the data are simply skipped. The in-
duced resynchronization has — in absence of informa-
tion in the file system — to be done at the application
level.

� Renegotiation
of reservations may become necessary if — in contrast
to these short intervals of unavailability — long term
changes are occurring, e.g. if additional high priority
load is put onto a system. In that case, interfaces are
needed to renegotiate the admission.

3.3 Resource Manager Interface
Based on the experience with the intuitive design of var-

ious resource managers in DROPS, a Resource Manager In-
terface was defined. It consists of two parts: a management
and a data interface. Fig. 4 shows the interaction of these
interfaces.

3.3.1 Management interface

This interface must be implemented by every component of
the DROPS system. It has several tasks:

� Admission Control

� Resource mapping

� Short term adaptation

� Long term adaptation (renegotiation)

4



Management Interface

Data Interface

File
System

Application

Decoder
MPEG

Scheduler
CPU

Figure 4. Resource Manager Interface

3.3.2 Data interface

This interface must only be implemented by components
which may be a part of a component chain, e.g. the file sys-
tem or the MPEG decoder. Its tasks are:

� the transport of the application data stream

� the synchronisation of the components

4 An extended example
Fig. 5 shows a part of the component chain described in

section 2.

System
File MPEG

Decoder

SCSI
Driver

CPU
Scheduler

Application

Figure 5. An example for the usage of Resource
Managers

If the application wants to create a new video stream, it
performs the following steps:

1. It calls the appropriateopen-functions of the manage-
ment interfaces to open the MPEG stream at the file sys-
tem and to create a new decoder thread. To perform

the admission test, the file system requests the required
bandwidth at the SCSI driver; the decoder calculates the
required CPU time according to the resolution and the
frame rate of the MPEG stream and requests it at the
CPU scheduler. If these reservation requests can be ful-
filled, the open calls return successfully, otherwise the
requests are rejected.

The reservation requests to the SCSI driver and the CPU
scheduler contain an callback function, which is used
to inform the file system and the decoder of a resource
shortage.

2. If all open requests return successfully, the application
connects the file system and the decoder and starts the
data transfer.

4.1 Adaptation

To enable the short term adaptation, a component must in-
form the resource manager of its different requirements. The
MPEG decoder may be able to reduce its CPU requirements
by displaying only the I-frames of a MPEG stream and skip-
ping the P- and B-frames. Therefore, the decoder requests the
CPU time required to display the I-frames at a high priority.
This reservation must be fulfilled at every time. Additionally,
the decoder requests the time required to display the P- and
B-frames at a lower priority, this reservation may be missed
sometimes.

While processing the MPEG stream, the decoder tries to
display all frames of the stream. If the CPU scheduler detects
that the decoder exceeds its time slice, it uses the callback
function to notify the decoder about it, which then skips some
frames.

The file system uses a similar mechanism to handle re-
source shortage. The different frames of the MPEG stream
are stored in separate files. The bandwidth required to read
the file of the I-frames is requested at a high priority while
the bandwidth required by the P- and B-frames is requested
at a lower priority. Thus, the file system can skip some disk
requests of the P- and B-frame file if the SCSI driver detects
the possible violation of deadlines of disk requests.

4.2 Renegotiation

If the CPU scheduler or the SCSI driver detect a perma-
nent resource shortage, a renegotiation of the reservation is
required. The MPEG decoder can reduce its requirements by
scaling down the resolution of the stream.

The renegotiation can also be used if a new stream is cre-
ated by the application, which high priority requirements can-
not be fulfilled with the current reservations.

5 Related Work
The Rialto Operating System [7] defines a model for

distributed real-time resource management. A Resource

5



Provider exports two functions: it provides the resource (the
data interface) and it provides an operation to determine the
required lower level resources (the resource mapping part of
the management interface). This operation is used by a cen-
tral Resource Planner to perform the resource negotiation.
Rialto partly provides adaptation, e.g., the CPU scheduler de-
scribed in [8] uses a similar mechanism to that discussed in
section 2, but resources cannot be allocated at several priority
levels.

A model for adaptive resource allocation is described in
[10]. The resource requirements of an application are de-
scribed by a Resource Usage Model (RUM). An adaptive ap-
plication has several RUMs, a Resource Controller selects an
applicable one and performs the corresponding reservations.
The long term adaptation described above is similar to this
adaptation model; the RUMs describe the results of the rene-
gotiation.

6 Conclusions
Based on resource managers which have been built in the

DROPS project, a somewhat more systematic approach to
design resource managers and to built application systems
based on such resource managers has been discussed in this
paper. It is characterized by taken the usage of resources into
account from very early stages in the design process.

References
[1] D. P. Anderson. Metascheduling for Continuous Media.ACM

Transactions on Computer Systems, 11(3):226–252, August
1993.

[2] ATM Forum Technical Commitee.ATM: Traffic Management
Specification, Version 4.0, 1996.

[3] M. Borriss and H. Härtig. Design and Implementation of a
Real-Time ATM-based Protocol Server. In19th IEEE Real-
Time Systems Symposium (RTSS), Madrid, Spain, Dec. 1998.

[4] C.-J. Hamann. On the quantitative specification of jitter con-
strained periodic streams. InMASCOTS, Haifa, Israel, Jan.
1997.

[5] H. Härtig, M. Hohmuth, J. Liedtke, S. Sch¨onberg, and
J. Wolter. The Performance of�-Kernel-based Systems.
In 16th ACM Symposium on Operating System Principles
(SOSP), pages 66–77, Saint-Malo, France, Oct. 1997. Pa-
per and slides available from URL:http://os.inf.tu-
dresden.de/L4/.

[6] H. Härtig, M. Hohmuth, and J. Wolter. Taming Linux. InPro-
ceedings of the 5th Annual Australasian Conference on Par-
allel And Real-Time Systems (PART ’98), Adelaide, Australia,
Sept. 1998.

[7] M. B. Jones, P. J. Leach, R. P. Draves, and J. S. B. III. Modu-
lar Real-Time Resource Management in the Rialto Operating
System. In5th Workshop on Tot Topics in Operating Systems,
May 1995.

[8] M. B. Jones, D. Rosu, and M.-C. Rosu. Cpu Reservations and
Time Constraints: Efficient, Predictable Scheduling of Inde-
pendent Activities. In16th ACM Symposium on Operating
System Principles (SOSP), pages 198–211, 1997.

[9] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled Cache
Predictability for Real-Time Systems. InThird IEEE Real-
time Technology and Applications Symposium (RTAS), pages
213–223, Montreal, Canada, June 1997.

[10] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha. On Adap-
tive Resource Allocation for Complex Real-Time Applica-
tions. In Proceedings of the 18th IEEE Real-Time Systems
Symposium (RTSS), Dec. 1997.

6


