Fast Component Interaction for Real-Time Systems

Udo Steinberg, Jean Wolter, Hermann Hirtig
Technische Universitit Dresden
Department of Computer Science
01062 Dresden, Germany
{steinberg, wolter, haertig} @os.inf.tu-dresden.de

Abstract

Open real-time systems provide for co-hosting hard-,
soft- and non-real-time applications. Microkernel-based
designs in addition allow for these applications to be mu-
tually protected. Thus, trusted servers can coexist next to
untrusted applications. These systems place a heavy burden
on the performance of the message-passing mechanism, es-
pecially when based on microkernel-like inter-process com-
munication.

In this paper we introduce capacity-reserve donation
(in short Credo), a mechanism for the fast interaction of
interdependent components, which is applicable to com-
mon real-time resource-access models. We implemented
Credo by extending L4’s message-passing mechanism to
provide proper resource accounting and time-donation con-
trol, thereby preserving desired real-time properties.

We were able to achieve priority inheritance and stack-
based priority-ceiling resource sharing with virtually no
overhead added to L4’s message-passing implementation.
By providing a mechanism that does not impose perfor-
mance penalties, while still guaranteeing correct real-time
behaviour, Credo allows for the usage of microkernels in
general-purpose but also in specialized systems.

1. Introduction

In the last years a significant amount of work has been
put into the integration of requirements for different com-
puting domains into real-time environments. The resulting
systems are called open systems because they are no longer
restricted to hard real-time applications. Examples for such
open systems are “open secure systems” which integrate
trusted subsystems and untrusted legacy components into
one system, and open real-time systems [4] which co-host
hard-, soft- and non-real-time-systems, for example a GSM
stack, a banking application and games running in parallel
on a cell phone.

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

All these applications place various constraints on the
underlying system. To be able to run these applications on
one platform the following mechanisms for separation are
required:

e Temporal separation to provide real-time capabilities

e Spatial separation to ensure protection and fault con-
tainment

e Communication control to prevent “security leaks”

Microkernels provide an ideal platform to host open sys-
tems. They provide address spaces for spatial protection
and thereby isolate faults and protect trusted components
from attacks and faults in untrusted components. Informa-
tion flow can be controlled by restricting inter-process com-
munication (IPC) [10], the only means of communication
available in microkernel-based systems. Because all com-
ponents heavily rely on IPC, it has to be fast. Current sys-
tems are mostly based on synchronous IPC, which achieves
a high performance due to its short code path and low pres-
sure on hardware resources like cache and TLB.

Synchronous IPC implementations differ in how they re-
duce IPC overhead. They either migrate threads from one
component to another like in Pebble [6] or they block the
sender and directly switch to the receiver like in L4 [12].
Because in the latter approach the sender blocks until the re-
ceiver sends a reply, IPC creates a dependency between two
schedulable entities, which can lead to scheduling anoma-
lies.

Most real-time kernels that focus on minimality use a
simple fixed-priority scheduling algorithm, which on one
hand does not provide temporal isolation and on the other
hand is prone to priority-inversion problems when compo-
nent interaction creates a dependency between two schedu-
lable entities. In this paper we introduce a reservation-based
approach to provide temporal isolation. We discuss the
problems related to component interaction, such as prior-
ity inversion and correct accounting of consumed time, and
demonstrate how our mechanism can be used to implement

YF]',F.

COMPUTER

SOCIETY

priority inheritance and stack-based priority ceiling. Finally
we discuss performance issues and show that the described
mechanism does not degrade IPC performance much while
providing a predictable behaviour for component interac-
tion.

1.1. Related Work

Various approaches have been proposed to temporally
isolate applications in an open system thereby protecting
them against the misbehaviour of other applications. Hier-
archical approaches [4, 11, 21] isolate the different appli-
cation classes in a high-level scheduler that in turn hands
down CPU guarantees that can be used by the lower-level
schedulers to execute their application class. Especially
cross-class communication requires a decision of all sched-
ulers involved during the communication. While this over-
head can possibly be neglected for monolithic systems, the
typically one to two orders of magnitude faster inter-process
communication in microkernel-based systems cannot toler-
ate the performance penalty.

The Resource-Reservation framework [17, 20], which is
based on Bandwidth Isolation [1, 7], successfully isolates
applications by reserving hardware resources and guaran-
teeing each application a time C in every period T for
which the application can use the resource. Resource-
reservation techniques have also been applied to dynamic-
priority schemes [1] and ported to Linux [19]. Constant-
Bandwidth Servers [1] use deadline postponing to pro-
vide bandwidth isolation. Extensions for resource reclaim-
ing [15, 3] have been proposed for and added to CBS. How-
ever, these approaches only support independent tasks.

Resource Containers [2] provide a flexible mechanism
for servers to execute using the resources of their clients.
Niz et al. [18] apply resource-container techniques for re-
source sharing in reservation-based systems. Server pro-
cesses switch reservations depending on which client’s re-
quest they process. However, the overhead for changing the
resource container to be used and for delegating a container
between processes is unduly large to be performed on every
interaction.

[7] showed theoretically that donation-based systems are
viable. Early work in L4 [12] implemented a version of do-
nation that, while being fast, lacked generality due to unpre-
dictability. The opposite path with a predictable and general
model as proposed by [5] came with a prohibitive cost for
microkernel systems. Credo in turn is both predictable and
efficient because it extensively removes scheduling from
the critical communication path, making capacity-reserve
donation applicable for high-performance inter-component
communication schemes as they are provided by the L4 mi-
crokernel [13].

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

The remainder of this paper is structured as follows:
Section 2 discusses how message passing and capacity-
reserve donation can be combined to provide predictable
real-time interaction between interdependent components
and describes our solution to priority-inversion and ac-
counting problems. In Section 3 we show how common
resource-access protocols, such as priority inheritance and
stack-based priority ceiling, can be built on top of our mech-
anism. We evaluate our approach in Section 4 and conclude
the paper in Section 5.

2. Fast Component Interaction
2.1. Message Passing in Microkernel-Based Systems

To interact with each other, components must commu-
nicate. In this section we examine the problems that arise
when message passing is applied to real-time systems with
interacting components and illustrate how our approach
overcomes these problems.

rendezvous

send request | recv request
C | : [S
recv reply send reply

Figure 1. Message passing between a client
and a server

Figure 1 shows a typical component interaction between
a client and a server thread in a system with synchronous
message-passing, such as in L4. A successful message
transfer requires a rendezvous between a sender and a re-
ceiver thread. Initially the client acts as sender and sends a
request to the server. The server acts as receiver and must
agree to receive the message from the client — by waiting for
a message from a particular client or from any client. Once
the server has received the request, it works on behalf of the
client to handle the request and computes a reply. During
the message transfer from the server back to the client the
server acts as sender and the client is the receiver. The client
blocks after sending the request until the server replies or a
specified timeout triggers. The server unblocks from its re-
ceive operation at the moment it receives the request and
blocks again in another receive operation after sending the
reply back to the client. L4 achieves its efficient message-
passing performance by completely eliminating scheduling
from the critical path by directly switching from the sender
to the receiver of a message so as to avoid scheduling de-
cisions and by lazily updating the ready queue. Applying
the invariant that all ready threads except the currently ex-
ecuting thread must be in the ready queue and that blocked

YF]',F.

COMPUTER

SOCIETY

threads may remain enqueued until the next invocation of
the scheduler, this technique removes the need to manipu-
late the ready queue during message passing for the com-
mon case that the server sends its reply back to the client
before the next scheduling decision is required.

Many scheduling models assume that all components of
a real-time system are independent of each other. In a sys-
tem with frequent component interaction through message
passing this assumption is often not true. Threads providing
a service can be viewed as a resources and all client threads
communicating with servers contend for these resources. In
combination with fixed-priority scheduling of threads this
leads to priority-inversion problems as shown in the left-
hand example of Figure 2.

high ...

10]

I

I - —— - - ——
Z | | @ | |

g\ N X " g B ,_%‘ I X I
g - gl 8-
g & &
=

2 i 2
g g g
o = Q
al =] o

\j ongoing request

low .

Figure 2. Priority inversion during message
passing

In the right-hand example a client thread C sends a re-
quest to the low-priority server thread S. Before S can re-
spond it is preempted by a medium-priority thread X, which
may cause unbound priority inversion in the uniprocessor
case. Therefore, the basic message-passing mechanisms
must be designed such that well-known methods to avoid
priority inversion, namely priority inheritance and stack-
based priority ceiling, are supported without sacrificing per-
formance.

2.2. Approach

To achieve fast component interaction while preventing
priority inversion and misaccounting, we combine message
passing with a donation scheme. While usually the sched-
uler keeps thread state in a single data structure, our ap-
proach maintains two types of context information for each
thread: an execution context (CPU/FPU registers, thread
state) and a scheduling context. The scheduling context rep-
resents the capacity reserve of the thread, a time quantum
coupled with a priority, and is used to sort threads in the
ready queue. Due to the separation of the contexts the ker-
nel can now switch execution context and scheduling con-
text indepedently, which facilitates the implementation of
capacity-reserve donation from one thread to another.

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

Old Thread New Thread

Iy — — A
: 1

T —
Tk T
. [

I [
3 ' Current SC Current SC ' |
"=~ Current EC Current EC -~

Thread Switch
Old Thread New Thread

1 — —> Iy
: :

T T i
Tk 3 T
Lo j I

I I I
3 ' Current SC ' Current SC i
'--- Current EC Current EC - - -

Capacity—Reserve Donation

Figure 3. Context separation and switching

The kernel tracks references to the currently running ex-
ecution context and to the currently active scheduling con-
text. The current scheduling context defines the priority of
the current execution context and provides the time quan-
tum for executing the thread represented by that execution
context. During a regular thread switch from one thread
to another the kernel switches to both the execution con-
text and the scheduling context of the selected thread. The
newly dispatched thread then consumes its own time quan-
tum and runs with its own priority as shown in the left-hand
example of Figure 3.

In contrast to regular thread switches, the kernel switches
only the execution context when sending a request from a
client to a server thread as illustrated in the right-hand ex-
ample of Figure 3. By not switching the scheduling context,
the client effectively donates its time quantum and priority
to the server for the time the server works on behalf of the
client. Upon sending the reply, the server switches back to
the client’s execution context and the client reobtains its do-
nated scheduling context. Donation of scheduling contexts
is transitive. If the server needs to contact another server
to process the request, it acts as a client itself and further
donates the scheduling context it received. Combining lazy
queueing and capacity-reserve donation with message pass-
ing leads to:

o Fast message passing — no ready queue manipulations,
priority changes or scheduling decisions required on
the critical kernel path

e Correct accounting — the consumed CPU time is al-
ways accounted to the client requesting a service

For an intuitive understanding of the application of these
mechanisms to priority inheritance and stack-based prior-
ity ceiling the reader may temporarily jump to Section 3.
However, some ramifications needed for a complete under-
standing will only be provided in the following subsections.

YF]',F.

COMPUTER
SOCIETY

2.3. Donation Algorithm

In a fully preemptive kernel asynchronous thread wake-
ups due to expired send- or receive timeouts can cause the
preemption of the current execution context. In the un-
common case that such a wakeup preempts a client-server
scenario with a donation dependency, the scheduler must
recognize and correctly resume the donation. We now de-
vise an algorithm for the scheduler to select the new current
scheduling context (SC) and the new current execution con-
text (EC) after a preemption by tracking the donation path.

EC SC

low ... ,

Figure 4. Donation scenarios (downward, up-
ward, mixed)

Figure 4 shows three different scenarios of donation.
When the scheduler selects a new thread to run, it traverses
the ready queue starting at the highest priority level. We
distinguish the following three cases of capacity-reserve do-
nation:

1. Downward donation — The client that donates its
scheduling context has a higher priority than each
server involved in the handling of the client’s re-
quest. Therefore the scheduler finds the blocked client
first, selects the client’s scheduling context as cur-
rent scheduling context and then follows the message-
passing partners from the client to the thread to which
the client’s scheduling context had been donated prior
to the preemption of the request handling. The exe-
cution context of the last thread in the donation chain
becomes the current execution context.

2. Upward donation — If the last server involved in the
message-passing operation has a higher priority than
the client, the scheduler finds that ready server first and
selects it as the current execution context. However,
the scheduler must not select the server’s own schedul-
ing context as the current scheduling context and in-
stead traverse the message-passing partners backwards
to find the source of the donation. The beginning of the
donation chain is the client whose scheduling context
becomes the current scheduling context.

3. Mixed donation — If a server has to contact another
server to handle the client’s request, a scenario can
occur where both the client and the last server have

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

a lower priority than an intermediate server that was
involved in the handling of the request. The sched-
uler then finds the blocked intermediate thread first.
Traversing the donation chain backwards leads to the
client and yields the current scheduling context. Fol-
lowing the donation chain from the intermediate server
to the ready server leads to the current execution con-
text.

We can now summarize the algorithm for resuming a
preempted message-passing operation by the scheduler as
follows:

e When the scheduler finds a blocked thread in the ready
queue, traversing the donation chain backwards yields
the source of the capacity-reserve donation — the cur-
rent scheduling context, which may also be the blocked
thread itself. Traversing the donation chain forward
leads to the most recent recipient of the capacity-
reserve donation, the thread representing the current
execution context.

e When the scheduler finds a ready thread, no forward
traversal of the donation chain is necessary — the ready
thread represents the current execution context. How-
ever, the scheduler must still find the current schedul-
ing context, which may be provided by a different
thread.

Although this original algorithm promised zero over-
head on the critical message-passing path of the kernel and
pushed the entire fixup cost for the preemption case into the
scheduler, we found a number of problems that we needed
to address in a revised version.

EC

high ...

low ...

Figure 5. Reverse traversal problem

Figure 5 illustrates a scenario that makes reverse traver-
sal of donation chains impossible. A low-priority client
thread C; sends a request to an intermediate server thread
I. In order to provide the service, I has to contact a high-
priority server S. However, before / can contact S, another
client thread C, preempts /, attempts to send a request to
I as well and blocks because [is not receiving. After S
has received the request from / it is preempted by an asyn-
chronous thread wakeup and the scheduler now has to re-
sume the donation. It finds the high-priority thread S in the

YF]',F.

COMPUTER
SOCIETY

ready queue first and selects it as execution context because
S is ready. In order to determine the scheduling context that
S had been preempted on (C;), the scheduler traverses the
donation chain backwards and finds /. The problem is now
that thread 7 has received capacity-reserve donations from
multiple threads. Although a forward traversal always pro-
duces a donation chain, a backward traversal can produce a
complex donation tree.

A different problem can occur when the scheduler finds
a blocked thread in the ready queue and performs a forward
traversal of the donation chain to determine the current ex-
ecution context. If the thread at the end of the donation
chain is not ready but blocked, it cannot be dispatched. Such
“dead ends” can be caused by threads that have no depen-
dency on another thread, for example threads in the follow-
ing states:

o Sleeping (receiving from a special id with a timeout)
e Receiving from any other thread
e Receiving from a hardware-interrupt source

Note that a send operation can never cause a dead end, be-
cause it always produces a dependency on another thread,
namely on the send target. To handle dead donation chains
the scheduler can either skip over them or remove them
from the ready queue. The first option heavily degrades the
performance of dispatch decisions, because potentially the
scheduler has to traverse several donation chains and skip
over many threads. The second option requires that the ker-
nel reenqueues the entire donation tree in an atomic fashion
when the dead end becomes ready, which is difficult to im-
plement.

Another problem is that donation-chain traversal makes
preemption decisions expensive. When an asynchronous
thread wakeup occurs, the kernel should be able to quickly
decide if the awakened thread should preempt the current
thread or not. In a mixed-donation scenario as shown in
Figure 4 a thread with a priority between that of / and S
could be woken up and should not preempt S, because /
could always donate its higher-priority scheduling context
to S instead of passing along the scheduling context of C.
Dispatch decisions require knowledge of the maximum pri-
ority of all threads along the donation path. We discuss so-
lutions to these problems in the following subsection.

2.4. Implementation

The problems of the original algorithm are caused by
missing or lost information about the donated scheduling
context. At the time of the preemption the kernel knew
which execution context and scheduling context were ac-
tive, but did not save the information. If we take one step

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

back and relax our requirement of an unmodified message-
passing path, we can come up with a less problematic algo-
rithm that is still fast. Recall that we have to traverse the
donation chain to find the current scheduling context and
the current execution context, and to compute the maximum
priority of all threads along the chain during preemption de-
cisions. A closer look at the donation graphs reveals that

e cach execution context to which capacity reserves have
been donated forms the root of a donation tree

o the leaves of the donation tree are the scheduling con-
texts that have been donated to the execution context
at the root of the tree

e there is a unique path from each leaf node to the root
node

o the leaf node provides the time quantum and the
highest-priority thread along the path provides the pri-
ority for the execution context at the root node

e at any point in time there is exactly one path that pro-
vides time quantum and priority to the root node be-
cause it has the highest priority of all paths

For the improved algorithm we add the following ad-
ditional attributes to each node of a donation tree to lo-
cally cache information in order to reduce the overhead
for recomputation of these attributes by traversing donation
chains.

e areference to the last scheduling context that has been
donated to this node (donated scheduling context)

e the maximum priority along the donation chain from
the origin of the donated scheduling context to this
node (path priority)

e a reference to the node that donated the scheduling
context to this node (donating thread)

Initially the donated scheduling context of each thread
points to the thread’s own scheduling context, the path pri-
ority is the priority of that scheduling context and the do-
nating thread pointer is a null pointer.

When a new dependency is added or removed between
a donator and a donatee, the kernel traverses the donation
chain from the donatee towards the root node until it reaches
the root node or encounters a node with a higher path prior-
ity. For each traversed node, the kernel updates the donation
attributes if necessary.

When adding a dependency, the kernel

e updates the donating-thread pointer of all traversed
nodes to point to the node’s donator, thereby rewriting
the donation path

YF]',F.

COMPUTER

SOCIETY

o sets the path priority of all traversed nodes to the max-
imum of the donator’s path priority and the donatee’s
own priority, thereby caching the ceiling priority of the
path

e sets the donated scheduling context of all traversed
nodes to the donated (current) scheduling context,
thereby caching the scheduling context that has been
most recently donated

When removing a dependency, the kernel checks the
message-passing partner list of the donatee to find the
highest-priority thread that still has a dependency on the do-
natee and, if such a thread exists, uses that thread’s donation
attributes to update the traversed nodes. Otherwise it uses
the donatee’s own donation attributes and sets the donating-
thread field of the donatee to a null pointer.

high ...

Xxp o B/B/A

E)SI é/é/l

Figure 6. Example dependency tree (donated
scheduling context/path priority/donating
thread)

Figure 6 shows four example donation trees and the ad-
ditional attributes added to each node. In the first example
the client thread C donated its scheduling context to S via
P and I. For clarity all threads are shown with their original
priority and not with their path priority. When the sched-
uler is invoked it traverses the ready queue. The scheduler
removes all blocked threads it comes across (P and /) from
the queue until it finds a ready thread (S). It then selects
that thread as current execution context and the thread’s last

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

donated scheduling context as current scheduling context.
The second example illustrates that, if S blocks, a scenario
can occur where a donation chain joins an already existing
donation tree. As soon as A donates to I, the kernel notices
that A’s path priority is lower than that of / and therefore
no update is required between the donatee (/) and the root
node (§). In the third example a high-priority thread X joins
an already existing donation tree for §. As soon as X do-
nates its scheduling context to P, the higher path priority of
X triggers an update of the donation chain from the donatee
(P) to the root node (S).

When a donation dependency is removed, for example
the dependency between P and /, as illustrated in the fourth
example, the kernel checks the partner list of the donatee (/)
and finds A as highest-priority donator. It then sets I’s do-
nating thread pointer to A and the path priority and donated
scheduling context of / and S to B.

3. Resource-Access Models

In microkernel-based systems the kernel usually does not
provide any high-level resources at all. Objects like files,
devices or sockets are provided by user-level servers. To in-
voke an operation on such an object a client just sends a re-
quest to the server providing the object, using the message-
passing facilities. From a timing perspective this invocation
looks like a local function call with a slightly higher over-
head if the thread donates its capacity reserve.

If resources are shared, we are faced with priority-
inversion issues and have to take this into account while
designing the system. We can solve the priority-inversion
problem by either designing the system for priority inheri-
tance or for stack-based priority ceiling.

3.1. Design based on Priority Inheritance

To construct a system using priority inheritance we have
to assign priorities such that threads always request services
from threads with a lower priority. Capacity-reserve dona-
tion then always results in priority inheritance, which solves
the priority-inversion problem. In contrast to normal prior-
ity inheritance, where the holder of the resource inherits the
priority of the thread requesting the resource, in our case the
thread representing the resource inherits the priority of the
requesting thread, which results in the expected behaviour.
After sending the reply to the resource holder the donating
thread may acquire the resource.

If we cannot directly represent the resource as a thread
but instead have to protect a more general critical section,
we can implement a binary semaphore with priority inheri-
tance. The thread providing the semaphore either waits for
incoming requests if the semaphore is free or waits for a
release reply from the semaphore holder, thereby creating

YF]',F.

COMPUTER

SOCIETY

a dependency on it. Other incoming requests block on the
semaphore thread donating their reservations along the de-
pendency chain to the semaphore holder.

3.2. Design based on Stack-Based Priority Ceiling

To implement a system with stack-based priority ceiling
we associate each resource with a high-priority thread and
construct the system such that requests to claim a resource
are always made from a lower-priority thread to the higher-
priority thread representing the resource. While a thread
uses the resource, it effectively provides its own time but
runs with ceiling priority of the resource thread.

3.3. Priority-Ceiling Protocol

We are not able to implement the priority-ceiling pro-
tocol using the proposed mechanism. The priority-ceiling
protocol consists of scheduling rules, allocation rules and
priority inheritance rules. We are able to implement the
scheduling rules. We could implement the allocation rules
by using a central server which keeps track of priorities
of threads, priority ceilings of all resources and the cur-
rent ceiling of the system. The server would allocate re-
sources to threads according to the allocation rules. But the
allocation rules lead to a situation called avoidance block-
ing where a higher-priority thread blocks while requesting a
free resource, because a thread has raised the system ceiling
by allocating another resource. Both threads are indepen-
dent from each other and our donation mechanism uses de-
pendencies between threads to achieve priority inheritance.
Therefore we are not able to implement the priority inheri-
tance rules of the priority-ceiling protocol.

3.4. Resource Access and Capacity Reserves

In reservation-based systems with shared objects and
mutual exclusion or client-server communication a scenario
may occur where a capacity reserve is exhausted while a
thread is inside a critical region or a server fulfils the re-
quest of a client while running on a donated capacity re-
serve. Other threads trying to enter the critical region or
trying to send a request to the server could be blocked until
the capacity reserve is replenished even if they have some
budget left.

[3] suggests to allow the thread to overrun its budget to
be able to leave the critical region. Since in our system the
kernel does not know anything about critical regions we can
not allow a thread to overrun its capacity reserve.

[7] extensively discusses situations in which tasks under
budget control interfere with each other and derives formu-
las to calculate interference times for the bandwidth inher-
itance protocol. Credo is a similar approach. If a thread

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

blocks on another thread it donates its capacity reserve to
help the other thread out of its critical region and reobtains it
when the other thread leaves that critical region. In a normal
priority-based system threads always block on a thread with
lower priority. With reservations threads may also block
on threads with higher priority and an expired capacity re-
serve. We have to adapt our donation algorithm to handle
this situation. While parsing the dependency chain we may
encounter a node with a higher path priority but an expired
capacity reserve. In this case the algorithm continues the
dependency traversal.

In this paper our main focus was the donation mecha-
nism. The reservation framework provided by the kernel
[8] supports the following alternatives:

e Adaption: Threads are expected to voluntarily release
their capacity reserves before they expire. If a capacity
reserve expires, a notification is sent to an exception
handler which may try to handle this situation by as-
signing additional time to the thread to help it out of
its critical region and which may adjust the reservation
of the thread to minimize the number of such events in
the future.

e Additional Reservation per Thread: We may assign
threads an additional reservation which they can use if
their main reservation expires inside a critical region.
But this leads to lower CPU utilisation since this reser-
vation is seldomly used.

e Reservation per Resource: If we access a resource via
stack-based priority ceiling we may give the thread
representing the resource its own reservation. If the
capacity reserve of a thread expires while using the re-
source the scheduler switches to the reservation of the
thread representing the resource and the thread contin-
ues.

e Reservation per Server: In a client server scenario the
server may have to reserve its own time when doing
larger amounts of work for its clients.

4. Evaluation

A detailed analysis of L4 IPC costs has already been
presented in [14]. [16] looked at the real-time behaviour
of L4’s message-passing system and [9] analysed the per-
formance of a complete system running time-sharing appli-
cations, whereas [8] looked at a system running soft- and
non-real-time applications in parallel.

In this paper we focused on the integration of capacity-
reserve donation into a synchronous message-passing facil-
ity with preferably zero overhead added to the critical path.
We developed a solution which adds a neglectible overhead

YF]',F.

COMPUTER

SOCIETY

to each message-passing operation. Figure 7 shows an ex-
cerpt of the donation code in the IPC path. The function
calls are generated inline and mostly only return or set a
value. Context::donate_time translates to 16 instructions
and typically only half of them is executed. Since this is
difficult to measure with about 1380 cycles for an IPC on
a 500MHz PIII we restrict ourself to a qualitative analysis.

. PUBLIC void
For the uncontended case the overhead comprises:

Context::donate_time (Context * d)

. {
e Check whether we establish a dependency or release Sched_context * s = d->sched();
one // someone donates time to me
_path_prio = s->prio(Q);
o Setting the thread’s most recent donation partner set_sched_donatee(d) ;
if (running_on_donated_time())
e Setting the thread’s most recently donated scheduling {
context // revert potential priority bump
sched()->set_prio(_path_prio);
e Computing the maximum of the donatee’s and the do- é é tr :2}:&2;&‘;"’“"10“
nanr’S[niority if Es—>prio() < saved_sched()->prio(Q))
. . {
These parameters are contained in the thread-control // bump priority
blocks (TCBs) of the donator and the donatee. Access to s->set_prio(saved_sched()->prio());
both TCBs can lead to two TLB misses, but introduces no) ¥
additional overhead, because we have to touch both TCBs else
during message passing anyway. Referencing the addi- {
tional attributes for donation tracking can cause an addi- if (s->prio() < sched()->prio())
tional cache miss if these attributes are not properly aligned {
. . . propetly . & s->set_prio(sched()->prio(Q));
with other data that is accessed during message passing. 1
For the contended case we have to update the donation set_saved_sched(sched());
attributes for all other threads along the donation chain, so set_sched(s);
the total overhead depends on the number of threads in-) ¥
volved in the donation scenario — the nesting depth of the PUBLIC void
message-passing system. For each of these threads we al- Context: :add_dependency (Context* partner)
ways incur an additional TLB miss and a cache miss be- { hy . 4 ol
. . _ i !running_on_donated_time
cause their TCBs are not used during the actual message partner 1= sched_donatee()) {
passing. if (sched()->prio() <=
When the kernel preempts a thread with a path prior- partner->sched()->prio()) {
ity that differs from the thread’s original priority, the thread if (lpartner->running on_donated_time()) {
t be enqueued in the ready queue according to the path // ceiling scenario
n19S . q y 9 X g. . p partner->donate_time(this);
priority and reenqueued according to its own priority when }
the donation ends. We expect the preemption of a message- }
passing operation to occur rather infrequently, which is why else {

// priority inheritance scenario
partner->donate_time(this);
}
}
}

we update the ready queue in a lazy fashion.

5. Conclusion

We introduced Credo, a capacity-reserve donation
scheme for fast component interaction in microkernel-based Figure 7. Dependency code in IPC path
dependable open real-time systems.
Credo, a donation-based mechanism, resolves priority-
inversion and accounting problems in resource-sharing sce-
narios. The mechanism facilitates the construction of a va-
riety of systems, among them systems based on priority in-
heritance and stack-based priority ceiling, so that existing
mathematical models can be reused.

YF]',F.

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05) COMPUTER
0-7695-2400-1/05 $20.00 IEEE SOCIETY

The design and implementation of this mechanism fo-
cused on preserving the high performance of the inter-
component communication mechanism provided by the un-
derlying microkernel (here L4). Decomposing a thread
into execution context and scheduling context allowed us
to integrate capacity-reserve donation into L4’s [IPC mecha-
nism without noticeable performance overhead. Credo im-
proves the applicability of microkernels for general-purpose
as well as specialized systems such as dependable open real-
time systems.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In Real-Time Systems Sym-

posium, Madrid, Spain, December 1998. IEEE.
[2] G.Banga and P. Druschel. Resource Containers: A New Fa-

cility for Resource Management in Server Systems. In Pro-
ceedings of the 3rd Symposium on Operating Systems De-
sign and Implementation, New Orleans, Louisiana, February

1999. USENIX.
[3] M. Caccamo, G. Buttazzo, and L. Sha. Aperiodic servers

with resource constraints. In Real-Time Systems Symposium,

London, UK, December 2001. IEEE.
[4] Z. Deng and J. Liu. Scheduling real-time applications in

open environment. In Real-Time Systems Symposium, San

Francisco, December 1997. IEEE.
B. Ford and S. Susarla. CPU Inheritance Scheduling. In

Usenix Association Second Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 91-105,

1996.
[6] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silber-

schatz. The pebble component-based operating system. In
Proceedings of the 1999 USENIX Annual Technical Confer-

ence, pages 267-282, June 1999.
[7]1 L. A. Guiseppe Lipari, Gerardo Lamastra. Task synchroniza-

tion in reservation-based real-time systems. IEEE Transac-

tions on Computers, 53(12):1591-1601, 2004.
[8] C.-J. Hamann, J. Loser, L. Reuther, S. Schonberg, J. Wolter,

and H. Hartig. Quality Assuring Scheduling - Deploying
Stochastic Behavior to Improve Resource Utilization. In
22nd IEEE Real-Time Systems Symposium (RTSS), London,

UK, Dec. 2001.
[9] H. Hirtig, M. Hohmuth, J. Liedtke, S. Schonberg, and

J. Wolter. The performance of u-kernel-based systems. In
Proceedings of the 16th ACM Symposium on Operating Sys-
tem Principles (SOSP), pages 66-77, Saint-Malo, France,

Oct. 1997.
T. Jaeger, J. E. Tidswell, A. Gefflaut, Y. Park, K. J. Elphin-

stone, and J. Liedtke. Synchronous ipc over transparent mon-
itors. In Proceedings of the 9th workshop on ACM SIGOPS

European workshop, pages 189-194. ACM Press, 2000.
M. Jones, J. Alessandro, F. Paul, J. Leach, D. RoOu, and

M. RoOu. An overview of the rialto realtime architecture. In
Proceedings of the 7th ACM SIGOPS European Workshop,

pages 249-256, Connemara, Ireland, September 1996.
J. Liedtke. Improving IPC by kernel design. In Proceedings

of the 14th ACM Symposium on Operating System Principles
(SOSP), pages 175-188, Asheville, NC, Dec. 1993.

[5

[ty

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Proceedings of the 17th Euromicro Conference on Real-Time Systems (ECRTS’05)
0-7695-2400-1/05 $20.00 IEEE

J. Liedtke. On p-kernel construction.
the 15th ACM Symposium on Operating System Principles
(SOSP), pages 237-250, Copper Mountain Resort, CO, Dec.

1995.
J. Liedtke, K. Elphinstone, S. Schonberg, H. Hirtig,

G. Heiser, N. Islam, and T. Jaeger. Achieved IPC perfor-
mance (still the foundation for extensibility). In 6th Work-
shop on Hot Topics in Operating Systems (HotOS), pages
28-31, Chatham (Cape Cod), MA, May 1997.

G. Lipari and G. Buttazzo. Schedulability analysis of peri-
odic and aperiodic tasks with resource constraints. Journal

of Systems Architecture, (46:327-338), 2000.
F. Mehnert, M. Hohmuth, S. Schonberg, and H. Hirtig.

RTLinux with address spaces. In Proceedings of the Third

Real-Time Linux Workshop, Milano, Italy, Nov. 2001.
C. Merecer, S. Savage, and H. Tokunda. Processor capacity

reserves for multimedia operating systems. In International
conference on Multimedia Computing and System. IEEE,

May 1994.
D. Niz, L. Abeni, S. Saewong, and R. Rajkumar. Resource

Sharing in Reservation-Based Systems. In Real-Time Sys-

tems Symposium, London, UK, December 2001. IEEE.
S. Oikawa and R. Rajkumar. Linux/RK: A portable re-

source kernel in Linux. In Fourth IEEE Real-time Technol-
ogy and Applications Symposium (RTAS), Denver, Colorado,

June 1998.
R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource

kernels. A resource-centric approach to real-time and multi-
media systems. In 4th Real-Time Computing Systems and

Application Workshop. IEEE, November 1997.
J. Regehr. HLS: A Framework for Composing Soft Real-Time

Schedulers. PhD thesis, University of Utah, 2001.

In Proceedings of

YF]',F.

COMPUTER

SOCIETY

