
Connecting Real-Time and Non-Real-Time
Components

Martin Pohlack, Ronald Aigner and
Hermann Härtig

Institut für Systemarchitektur

TUD-FI04-01 - Februar 2004

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakultät Informatik

Technische Berichte

Technical Reports
ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/



Connecting Real-Time and Non-Real-Time Components

Martin Pohlack, Ronald Aigner, Hermann Härtig
Dresden University of Technology
Department of Computer Science

01062 Dresden, Germany
{pohlack,aigner,haertig}@os.inf.tu-dresden.de

Abstract

In this paper we describe a solution to the problem of
communication between real-time and non-real-time compo-
nents in a split container architecture. The split architecture
carries forward an experience we gained in the The Dresden
Real-Time Operating System Project (DROPS) [8]: Often,
only small parts of applications need to be real-time capable.
Furthermore, often these parts require only a small fraction
of the complex services, which the remainder of the applica-
tion needs.

Therefore, we proposed the splitting of applications in
these two parts, whereas the small real-time part runs directly
on our fast real-time capable L4 microkernel and the remain-
der runs on a off-the-shelf operating system [14]. Conse-
quently, using this approach for a component-container ar-
chitecture, we can support real-time components and stan-
dard components in one system.

In this paper we focus on the connections between both
component types. We draft a buffer component which repre-
sents a non-real-time component in the real-time container.
This component allows using non-real-time component’s
complex services from real-time components, without giv-
ing up the real-time.

1 Introduction

In the COMQUAD Project (COMponents with QUantitative
properties and ADaptivity) we want to investigate technolo-
gies for components with non-functional properties [2, 5].
Examples for these properties are latency bounds for ser-
vices, memory usage, or disk bandwidth.

Instead of developing ‘yet another’™ component technol-
ogy, we decided to adapt existing technology, in our case a
subset of EJB [6], based on the JBoss implementation [10].

While we are able to reuse large parts of the code in JBoss,
it is hard to impossible to add certain properties, such as real-
time communication and real-time execution of components
to the infrastructure layer — the container. On the other hand
it is very unrealistic to re-implement the large component

base existing for EJB to a real-time environment.
On the strength of past experiences from the development

of DROPS we concluded that real-time capabilities are often
not necessary for large applications, but just for small parts
of them. So, we took the approach of implementing a small
real-time capable microkernel (Fiasco, [17]), intended to
run real-time servers, and a large off-the-shelf Linux server
(L

�

Linux, [15]) for all the other applications, which gives us
a fairly large code base.

We transfered this approach to our container architecture
which is now split in two parts. The non-real-time container
is based on JBoss, running in a standard JVM on L

�

Linux
and providing complex services, such as a component repos-
itory. The real-time container is running directly on the L4
microkernel. The latter one will contain all the real-time–
capable components and the necessary infrastructure.

By splitting our container in two parts the problem of con-
necting them arises, which shall be thoroughly discussed in
this paper.

We propose a solution to the problem of communication
from real-time to non-real-time components. We exploit
know solutions from the literature and draft a buffer compo-
nent, which encapsulates and hides the communication prob-
lem and which can be parameterized, to implement arbitrary
request scheduling policies.

The remainder of this paper is organized as follows. In the
next section we discuss related work. In Section 3 we intro-
duce concepts, we based our work on. Section 4 describes
our architecture and our solution proposals, as well as a com-
plexity discussion. We conclude this paper with Section 5.

2 Related Work

During our work we looked at various similar real-time
projects to investigate their approach to communication be-
tween real-time and non-real-time tasks. Most of these
projects rarely mention how messages are transferred be-
tween real-time and non-real-time partners. Nonetheless all
provide some sort of communication framework.

1



2.1 RT-Posix

Liu describes Real-Time POSIX communication in [18]
(pg. 521ff., pg. 574) as priority-based and nonblocking us-
ing message queues. Due to the association with priorities,
the use of a message queue is determined by the priorities of
the message and the receiver. Therefore message-based pri-
ority inversion, where the receiving thread has a lower prior-
ity than the message, is a major problem. Example operat-
ing systems using message queues to communicate between
real-time and non-real-time tasks are QNX and VxWorks.

Message delivery is bound to the priorities of the partic-
ipating receiver. This does not imply that the receiver will
get necessary processing time within a specified time period.
Our approach uses priorities to implement resource reserva-
tion of CPU time, which can guarantee a minimal execution
time for non-real-time tasks.

2.2 Real-Time Specification for Java

The Real-Time Specification for Java [21] describes the prin-
cipal of “Asynchronous Transfer of Control”. Imagine a
complex algorithm, whose execution time is highly variable.
If this algorithm has the additional property to refine its re-
sult with each iteration, it may be useful to interrupt the algo-
rithm asynchronously and use its current result. This method
has the advantage, that the algorithm can be granted a spe-
cific amount of time that is available.

However, this approach has also several drawbacks. The
first is, that it is only applicable to iterative algorithms, which
refine their result over time, that is, it can only be used for a
limited number of algorithms. The second drawback is, that
the algorithm must be interruptible asynchronously, that is,
its internal state must not get corrupted by this and it must
always have a valid (although not necessarily up-to-date) re-
sult available.

As a consequence, using the principal of “Asynchronous
Transfer of Control” it is not possible to reuse existing com-
ponents unmodified. Reusing arbitrary components does not
make sense as well, as the algorithms must be able to refine
results. We aim at a more universal solution.

2.3 Realtime Application Interface

The Realtime Application Interface (RTAI) [4] projects aims
at providing a programming interface to Linux developers. It
includes kernel modules, which provide real-time services.
To allow the communication between real-time applications
in the kernel and non-real-time applications in user land, FI-
FOs are available, which are similar to the FIFOs of RT-
Linux. Another way to communicate between real-time and
non-real-time tasks is the Linux Realtime Module (LXRT)
which makes RTAI scheduler functions available to Linux
processes. This allows a fully symmetric implementation of

real-time services. It is possible to share memory, send mes-
sages, use semaphores and timings. And this can be done be-
tween two Linux processes, Linux and RTAI processes and,
naturally between RTAI and RTAI processes.

RTAI allows to communicate between real-time and non-
real-time tasks, but with the restriction of using RTAI con-
structs.This implies that non-real-time applications have to
be modified so real-time application can use them.

2.4 RT-Linux

As mentioned in [25] and [24] real-time tasks communi-
cate with non-real-time tasks using FIFO buffers called RT-
FIFOs. These buffers are pinned into kernel memory. Reads
and writes by real-time tasks are nonblocking and atomic. A
RT-FIFO buffer has to be big enough to hold the data. If the
buffer is full, no more data can be placed into it. And it is
not possible to reorganize the content of the buffer. Our ap-
proach allows to implement flexible algorithms to reorganize
the content of the FIFO buffer.

If a real-time tasks intends to use the service of a non-real-
time tasks it cannot communicate with this task directly (for
instance, by using RPC or sockets), but has to pipe its request
to this task using a FIFO buffer. This implies that the used
service has to be aware of this input variant and appropriately
modified.

2.5 KURT

In the course of implementing a real-time Linux, the Kansas
University Real-Time Linux (KURT) [7] group had to find
ways to publish events from the real-time kernel to non-real-
time applications. Therefor, KURT relies on the Data Stream
Kernel Interface (DSKI), which uses data streams to publish
kernel events to the user. To allow events to be buffered,
queues are used. [3] makes no explicit statement about plac-
ing a message into a data stream, except that it has to be fast.
Also do DSKI buffers have to be large enough to hold all
messages. Otherwise new messages will be dropped.

The DSKI basically uses FIFO buffers to transfer data
from the real-time kernel modules to non-real-time user ap-
plications. This implies the mentioned drawbacks of FIFO
buffers. User applications relying on data from the kernel
have to use the DSKI to obtain the data. Thus, modifica-
tions of application are necessary to use the real-time kernel
modules.

2.6 Real-Time Event Service

In the course of the TAO (The ACE ORB) project [22], a
Real-Time Event Service has been developed as an exten-
sion to the CORBA Event Service. The Real-Time Event
Service [13] provides features required by real-time appli-
cations such as real-time event dispatching and scheduling,

2



periodic event processing, and efficient event filtering and
correlation mechanisms. In contrast to the CORBA Event
Service, which allows push and pull relationships between
producers and consumers of events, the Real-Time Event
Service only allows Push relationships. This allows suppli-
ers of events to initiate the transfer of events to the consumer.
Whereas a pull supplier would wait until an consumer pulls
the event from it.

With respect to the mechanism of real-time to non-real-
time event delivery we looked at the characteristics of the
TAO Real-Time Event Service. Since the RT Event Ser-
vice does not explicitly handle the real-time to non-real-time
communication, we can regard a non-real-time consumer as
a consumer with a lower priority than the real-time con-
sumers. An incoming event is filtered and queued into a
priority queue. Dispatching threads dequeue the events and
deliver them to the consumers. A Run-Time Scheduler de-
termines the appropriate priority queue for an event based on
the event–consumer tuple. The implementation of the Dis-
patcher determines the use of dispatching threads.

The RT Event Service allows the decoupling of supplier–
consumer relationships. Using the event service, suppliers
or consumers can subscribe to events transparently, meaning
that a supplier is not notified when there is a new consumer
for its events and vice versa.

Since the dispatching of events depends on the priority of
the dispatching threads, that is, the priority of the consumers,
the event buffers can overflow. The Real-Time Event Ser-
vice does not specify how the sizes of the buffers are de-
termined. Since TAO is based on a off-line scheduling, we
assume that the event buffer sizes can be determined off line
as well. This fact also allows the implementation of O(1)
(worst case: Timers O(log N) — N is the number of timers)
event filtering by using lookup tables at run-time.

The TAO Real-Time CORBA implementation uses the
same mechanisms as the TAO Real-Time Event Service to
dispatch method invocations. Incoming requests are en-
queued based on the priority of the invoked service (the con-
sumer) and dispatched by dispatching threads.

One drawback of the RT Event Service is its complexity
and required infrastructure, which makes it hard to port to
DROPS quickly. The currently available implementation of
the RT Event Service in TAO is fast for a fixed task set which
can be scheduled off line. This includes feasibility analysis
of message dispatching and it allows a off-line calculation of
message priorities. Our approach allows to deliver messages
on a dynamic real-time system.

2.7 DSI

The DROPS Streaming Interface (DSI) [19] is a mecha-
nism to transfer large amounts of data unidirectionally using
shared memory. An interesting aspect of DSI is the time-
liness of packets in this stream. Packets are separated into

packet headers, which contain meta-data, such as a logical
timestamp, and packet data. This allows the packets to be
delivered in a strict FIFO order, but the packet’s content to
be distributed arbitrarily in the data buffer. Based on the log-
ical timestamp of a packet a consumer can decide to drop
the packet prior to its processing. DSI is a custom solution
for multi-media data stream transfer. A drawback is that the
communication partners have to be DSI aware — communi-
cation is not simply exchanging data. Also the strict FIFO
order of packets does not allow the usage of other replace-
ment strategies then dropping packets.

3 Background

3.1 DROPS

DROPS, as depicted in Figure 1, is an real-time capable op-
erating systems based on the L4 microkernel, which provides
fast inter-process communication (IPC). I/O device drivers
are implemented as user-level servers to provide isolation
and fault-tolerance for the OS. To demonstrate the flexibility
of L4, Linux has been modified to run as a user mode server
on top of L4 — L

�

Linux. This approach also demonstrates
that in order to provide features, such as real-time or security,
only few parts — device drivers — have to be ported, while
the majority of the former application — Linux — runs un-
modified.

DROPS includes a real-time window manager, DOpE [9],
which can guarantee refresh rates for its real-time clients.
Non-real-time clients of DOpE are drawn whenever there is
time left. DOpE also contains features to hide the content of
sensitive windows from untrusted windows.

Resources in DROPS are managed by resource managers
[16]. Resource managers can form hierarchies to either com-
bine different resources to form a higher level resource, or,
if managing the same resource, to form resource domains.
Resources can be reserved by an application in advance to
ensure their availability when they are used. This includes
the reservation of computation time, memory, etc.

Display

Display Driver

File System

Disk Driver

RT Protocol

ATM Driver

DSP Audio

DSP Manager

Video Display MPEG Decoder

make
gcc

xemacs

(CPU, Memory, Buses, Caches, Disks)

Basic Resource Management

L4 Microkernel

real−time environment

Component
Time−Sharing

(L4Linux)

non−real−time
environment

Figure 1: DROPS architecture

3



3.2 COMQUAD

The COMQUAD Project is implemented on top of DROPS.
Goals of the COMQUAD Project are the specification of non-
functional properties, such as resource demand, for compo-
nents. We provide tools to transform such a specification into
a run-time format, which is used to make resource reserva-
tions at run-time.

Another goal of the project is reuse of components and
resource classifications. This implies that existing compo-
nents, which are not real-time capable can be reused. With-
out a specification describing its run-time requirements, a
component is regarded a non-real-time component. Such an
specification includes the required services, which have to be
provided by the run-time environment — the container.

3.3 Motivation

When a real-time task communicates synchronously with a
non-real-time task it may loose its timeliness. This is due to
the fact that the non-real-time task can be delayed arbitrar-
ily when processing the request of the real-time task. And
the real-time task can be delayed for a potentially unknown
amount of time when placing its request at the non-real-time
task.

Some services are complex and to make them real-time ca-
pable is practically impossible. Still, real-time applications
may want to use those services, even though this implies
disadvantages, such as data loss. Some approaches, for in-
stance, the different real-time Linux flavors, use some sort of
buffer to propagate information from real-time applications
to non-real-time applications. Other approaches, such as the
Real-Time CORBA, use event services to connect real-time
applications with other real-time applications.

Our goal is to make non-real-time applications and espe-
cially components available for real-time components.

Some mechanisms mentioned in Section 2 could be used
to implement our ideas. We decided to provide our own im-
plementation for several reasons. Firstly, we did not want to
port complex mechanisms and infrastructure, such as POSIX
message queues, to DROPS. Secondly, other mechanisms
are too simple to allow generic use cases. One such use
case is the collection of sampling data from sensors. Us-
ing our approach, we can implement a policy which al-
lows the reorganization of our message queue, for instance,
by re-sampling the data (average values of samples next to
each other). In contrast RT-Linux FIFOs cannot be used to
achieve this, since no random access to elements is possible.

4 Connecting both worlds

4.1 Architecture

Applying our previous experiences with a small and simple
real-time core and the big and feature-rich single-unix server
L

�

Linux in DROPS to the COMQUAD Project, we came up
with a two-container approach, which is depicted in Fig-
ure 2. In practice real-time features mostly are not needed
for a whole large application but only for a small and simple
fraction of it. The splitting of the container in two parts gives
us several advantages over comparable projects:

• It simplifies the implementation of the container itself
as big parts can be reused from other projects.

• Not only is it harder to develop a complete real-time
capable container, but also the development of software
for such an environment is more complicated as the tim-
ing aspect has to be taken care of by the programmer.
With our approach, this is only necessary for the parts
that really need it.

The biggest part of the container resides on the L
�

Linux
side and consists of a stripped-down EJB Container, using
JBoss on a Sun JVM, mostly off-the-shelf components. Of
course this part of the container is not real-time capable and
timing-critical jobs have to be relocated to the real-time con-
tainer.

Components in the real-time container are L4 programs
implementing special interfaces as to be managed by the
real-time container. The functions comprising these inter-
faces correspond to the minimal set of functionality the real-
time container has to fullfill, which are detailed below.

A basic means of information exchange is Inter-Process
Communication (IPC), directly supported by the L4 micro-
kernel. For every IPC a timeout can be specified. To ease and
automate the very error-prone work of setting up the commu-
nication via IPC, we use our IDL compiler DICE [1], which
generates the Server and Client stubs, and is also capable of

DROPS

JVM

JBoss + Extensions

real−time properties
Container with

real−time components

real−time
component

management

components
non real−time

L4/Fiasco−Microkernel

L4Linux

Figure 2: Container Architecture

4



marshalling information such that it becomes interchange-
able between the two containers. On the real-time side we
do not use a Dynamic Invocation Interface but use generated
code, which is bigger but faster [12, 11, 13].

To maximize software reuse and to create a really small
and fast real-time container, we tried to find a minimal set of
functionality also necessary on the real-time side:

create The real-time container must be able to create new
component instances.

destroy Also removing of created instances should be sup-
ported.

init Initialisation of components, so that they can be started,
is necessary.

stop This functions stops the request delivery to a compo-
nent. Buffered requests will still be processed.

connect The container must be capable of connecting com-
ponent interfaces with other instances.

setParameter The container must be able to set compo-
nents’ properties. This method of modifying compo-
nents’ states is meant to be used for initialisation.

reserveResources The container must be able to make re-
source reservations on behalf of components.

callMethod The container must be able to forward calls to
arbitrary component methods.

install/uninstall Specification/Implemenation The con-
tainer must be able to accept and remove component
specifications and implementations.

Fortunately, it is not necessary to implement all of these
functions with real-time guarantees, such as the adminis-
tration of components. In our development we focus on
real-time communication between connected components,
not the establishing of communication structures and setup
in real-time, that means that only the callMethod operation
must be carried out in real-time.

The proposed design principle could also be an interesting
alternative to the “Real-Time Specification for Java” (RTSJ)
[21] and its implementations, as not only large parts of to-
day’s software could be reused but also the real-time compo-
nents run directly on the fast microkernel, can be written in
pure C or C++, and can therefore be much faster (see [23]).
We will describe our container architecture in detail in an-
other paper.

Following from the two-container design methodology the
problem of the coupling of both parts and the general com-
munication between arbitrary components arises and shall be
discussed in the following.

4.2 Communication

In this section we focus on the communication between com-
ponents residing on different sides of the real-time/non-real-
time border.

There are two kinds of communication partners, real-time
components and non-real-time components. Using services
from other components should not disturb the real-time ca-
pabilities. Synchronous communications is therefore feasi-
ble only in the following cases: real-time components using
services from other real-time components and non-real-time
components using services from both types of components,
real-time and non-real-time.

Asynchronous communication is usable in all cases, but
is necessary for real-time components using services from
non-real-time components. Imagine a real-time component
doing a synchronous call to a non-real-time logging service,
which is arbitrarily delayed on the non-real-time side. RT-
Linux has the concept of RT-FIFOs which can be accessed
in a nonblocking and atomic way from the real-time side.
However, if the FIFO’s memory is full, the real-time part
would have to wait, thereby possibly violating its timing con-
straints, or to drop data. We want to generalize the solutions
for this problem using a buffer component, comprising the
FIFO’s storage function and extracting the complexity of the
replacement policy in case of memory shortage.

Let us have an in-depth look at some solution attempts for
such a buffer component:

JNI A non-real-time component in the Java container is
willing to receive requests. It calls a special method im-
plemented using the Java Native Interface (JNI), which
can receive native L4 IPC. A real-time component
sends its request to the non-real-time component, which
is received and copied to a buffer in the JNI method.
The next step would be to wake up threads waiting on
the request queue. After this step the thread in the JNI
method is able to receive the next call. During the time
from the first message receipt until the buffer handling
is completed no request could be received. As we are
not willing to delay real-time components indefinitely,
there must be an upper time bound after which the mes-
sage sending must be completed, so that the real-time
component can proceed with its job. Due to the time-
imprecise nature of the non-real-time container, the up-
per bound, the non-real-time component is unable to re-
ceive messages, cannot be determined and lost requests
are to be anticipated.

This solution attempt is depicted in Figure 3.

native buffer handling Moving much of the thread and
buffer handling code, mentioned in the first solution
above (JNI), from the JVM into JNI methods imple-
mented in native C would reduce the amount of lost re-
quests due to the elimination of the biggest source of

5



JNI
IPC−Wait

thread
msg. receiver

msg. buffer
update

components
real−time

components
non real−time

C (JNI)JVM
L4Linux L4

new thread for
msg. reception

msg. is sent

wait for msg. insert msg.,
wakeup waiting threads

Figure 3: Communication from real-time components to non-real-
time components

unpredictability: The Java garbage collector. Also, the
code execution might be faster and therefore fewer re-
quest will be lost. On the other hand, code still runs
on the non-real-time side (L

�

Linux) and therefore is not
perfectly predictable.

buffer component If one wants to eliminate the other
sources of unpredictability (non-real-time operating
system) in the solution attempt described above, re-
quest buffering code must be moved to the real-time
container. So, the next logical step is a buffer compo-
nent residing on the real-time side, comprising at least
two threads. The receiving and storing of requests has
to be implemented in a predictable way. A low-priority
thread in the buffer component is responsible for deliv-
ering the request to non-real-time components. Both
threads have to access shared data at one point, the
stored requests. This operation — the removal of a re-
quest from the buffer — is the only part, where the de-
livering thread may interfere with the receiving thread’s
execution and is therefore the only part which must be
implemented predictably in the sender thread. Unfortu-
nately, also in this scenario data loss can occur as we
only have limited memory to store requests. No as-
sumptions can be made about the delivery rate of the
requests as the receivers are non-real-time components.

This solution is depicted in Figure 4.

From the discussion of the three described solutions we
conclude that lossless communication between real-time and
non-real-time generally cannot be guaranteed. So, it is im-
portant to have at least some kind of control about the re-
quest losses. Using a buffer component with a replacement
strategy eases the usability of our component architecture.
Additionally, it is possible to use such a buffer component
to connect real-time components with different throughput,
using controlled request dropping in the buffer component.

component
real−time

component
real−time

non real−time
component

buffer component

Figure 4: A closer view into a buffer component connecting two
real-time components with one non-real-time component

Another example for a more complex version of the buffer
component is the following example: A buffer component
connects various real-time sensors with a costly evaluation
component. It may not only drop single measuring points,
but may re-sample data stored in the buffer (i.e. combine
adjacent measurement points), thereby decreasing work but
also accuracy.

4.2.1 Complexity Analysis

As of writing this paper a preliminary implementation of the
buffer component exists. In this section we will discuss the
principal complexity of basic operations of this component.
The unit buffer is meant to hold one request and is organized
in pools.

We designed the buffer component such that it contains at
least two threads, whereas the first is responsible for receiv-
ing requests and the other for forwarding requests.

We use two memory pools, one for full buffers and one
for empty ones. The sizes of the buffers and pools can be
reserved at the time the communication is initialized. As
with many other real-time problems, also the communication
between the real-time component and the buffer component
must be scheduled.

To receive a request, the receiver thread has to perform the
following steps:

1. Receive IPC,

2. Decide whether to drop the request or not, based on re-
served communication bandwidth,

3. Look for a buffer in the free-buffer pool,

(a) if a buffer is found, remove it from the pool, copy
the request into the buffer, and enqueue the buffer
to the full-buffer memory pool,

(b) if no buffer is found, either drop the request, or
use a replacement policy to free a buffer and use
it.

Depending on the data structures used to manage the
memory pools, it is possible to easily select the first, the last,

6



or a random element from the pool to drop the request and
reuse the buffer.

Both the receiving thread and the forwarding thread use
shared data structures, which makes mutual exclusion nec-
essary. The forwarding thread must be built such that block-
ing is bounded to one dequeue operation on the pool, so that
message receipt can be predictable. Additionally, using a
known solution from the literature to the priority inversion
problem is advised here.

For example, by using simple lists the first element can be
accessed with a time complexity of O(1) (see 2.6).

Another attempt to buffer management would be to use
a real-time–capable memory-management library, such as
TLSF [20].

4.2.2 Priorities

Priorities could have two different meanings in our commu-
nication schema, where the first is that high-priority requests
overtake lower-priority requests, and the second is, that in
case of buffer overrun no higher-priority request is dropped
if lower-priority requests are still in the queue.

A buffer component has a one-to-one relationship with
a non-real-time component, which should receive requests
from a real-time component. In a situation where more than
one real-time component sends requests to the same non-
real-time component, it is possible to aggregate all senders
on one buffer component. This is either possible using
more receiver threads (which is depicted in Figure 4), or by
scheduling one receiving thread accordingly. Data structures
have to be instantiated for each sender to minimize inter-
ference. However, only one forwarding thread is necessary.
The forwarding thread is also the location of choice to im-
plement request-scheduling strategies. It could use a “fair”
policy and check the queues in a round-robin manner, but it
could also implement a hard priority policy, always checking
high-priority queues first.

The buffer component is essentially a representative of the
non-real-time component in the real-time container.

In our current implementation we do not consider request
priorities explicitly, as we don’t want to complicate buffer
handling algorithms. Instead we want to keep them simple
and real-time capable. However, priorities influence request
handling indirectly as CPU time is necessary to send re-
quest and higher-prioritized components can therefore send
request earlier and more often.

4.3 Results

We introduced a buffer component which:

• encapsulates all the low-level communication handling
when communicating between real-time and non-real-
time components;

• encapsulates the replacement policy in case of buffer
overrun;

• may contain an easily parameterizable replacement pol-
icy;

• allows easy usage of complex non-real-time functional-
ity from real-time components;

• allows the transfer of typed messages, with the help of
tool-generation communication stubs.

We generalize the solutions proposed in the literature in
Section 2 and provide an solution at component level.

5 Conclusions

In the COMQUAD Project our goal is to analyze non-
functional properties in component architectures, where real-
time capabilities of component’s services are one impor-
tant example. We wanted to focus on the research of non-
functional properties, and therefore we tried to minimize im-
plementation effort for infrastructure. We designed a system
architecture which allows us to reuse large parts of existing
non-real-time code. Our component container is based on
JBoss running in a Sun JVM on Linux. Instead of porting
the JVM to our real-time operating system DROPS, imple-
menting all the RTSJ features, and finally adapting the JBoss
container to use them, we took a different approach.

From the experience of our work in the DROPS project we
carried forward the observation that often only small parts
of large applications need to have real-time properties. We
decided to adopt large parts of the existing solution (JBoss,
JVM, and Linux) but use L

�

Linux instead of a native Linux.
Using L

�

Linux we are able to have real-time programs run-
ning concurrently to the classic container on L

�

Linux. One of
these applications is a minimal real-time capable container,
executing our real-time components.

Just having this split architecture does not yet allow reuse
of large code parts or even whole components. It is neces-
sary to be able to connect real-time and non-real-time com-
ponents, so that both types of components can interact and
use each other’s functionality. Furthermore it is necessary
to connect both containers, the small real-time–capable con-
tainer and the huge standard container (JBoss).

This paper describes how these connections can be accom-
plished, what type of communication can be used in which
situation, and describes the requirements, algorithms, and
data structures for so called buffer components, which are
actually used to connect components from both container
types. This work reconsiders approaches know for a long
time in the real-time community and tries to push this knowl-
edge one step further towards component architecture, while
still supporting common components. The described com-
munication techniques open up an interesting alternative to

7



large and complex approaches like RTSJ and offer high reuse
of existing code and components.

One interesting consequence — though not new — is that
data flow from real-time to non-real-time components can
not generally be realized without data loss, but only for spe-
cial cases. Consequently protocols capable to cope with data
loss must be used when sending data from real-time to non-
real-time components.

5.1 Limitations and future work

Our current implementation is preliminary and does not yet
offer all of in this paper drafted features. However, we are
working on this and hope to be able to deliver measurement
results soon.

We also want to extend the mentioned concepts towards
streaming connections. Our attempt here is to base our work
on DSI (see 2.7) and generalize its buffer handling. Also, a
network-transparent implementation using the DSI interface
looks interesting.

Finally, we want to realize more applications, using our
component model, which will give us feedback on how to
adapt the model to ease porting of existing and implemen-
tation of new applications. Additionally, we hope to practi-
cally verify the identified set of minimal functionality for the
real-time container for a broader application scenario.

References
[1] R. Aigner. DICE Documentation, http://os.inf.tu-

dresden.de/dice/.

[2] R. Aigner, H. Berthold, E. Franz, S. Göbel, H. Härtig,
H. Hussmann, K. Meissner, K. Meyer-Wegener, M. Mey-
erhöfer, A. Pfitzmann, S. Röttger, A. Schill, T. Springer,
and FrankWehner. COMQUAD: Komponentenbasierte Soft-
waresysteme mit zusagbaren quantitativen Eigenschaften und
Adaptionsfähigkeit. Informatik Forschung und Entwicklung,
18:39–40, 2003.

[3] B. Buchanan, D. Niehaus, G. Dhandapani, R. Menon,
S. Sheth, Y. Wijata, and S. House. The Data Stream Kernel
Interface. Technical Report ITTC-FY98-TR11510-04, Uni-
versity of Kansas, Jun 1998.

[4] P. Cloutier, P. Mantegazza, S. Papacharalambous, I. Soanes,
and S. Hughes. DIAPM-RTAI Position Paper. In Workshop
on Real Time Operating Systems and Applications and second
Real Time Linux Workshop, Lake Buena Vista, FL, Nov. 2000.

[5] Comquad Team. COMQUAD, http://www.comquad.org/.

[6] L. G. DeMichiel, L. Ü. Yalçinalp, and S. Krishnan. Enterprise
JavaBeans Specification, Version 2.0. Sun Microsystems, fi-
nal release edition, 14 Aug. 2001.

[7] W. Dinkel, D. Niehaus, M. Frisbie, and J. Woltersdorf. KURT-
Linux User Manual. Univeristy of Kansas, Mar. 2002.

[8] DROPS Team. Drops - the dresden real-time operating system
project. http://os.inf.tu-dresden.de/drops/.

[9] N. Feske and H. Härtig. Demonstration of DOpE — a Win-
dow Server for Real-Time and Embedded Systems. In 24th
IEEE Real-Time Systems Symposium (RTSS), pages 74–77,
Cancun, Mexico, Dec. 2003.

[10] M. Fleury and F. Reverbel. The JBoss extensible server. In
M. Endler and D. Schmidt, editors, International Middleware
Conference, volume 2672 of Lecture Notes in Computer Sci-
ence, Rio de Janeiro, Brazil, 16–20 June 2003. ACM / IFIP /
USENIX, Springer.

[11] A. Gokhale and D. Schmidt. The Performance of the CORBA
Dynamic Invocation Interface and Dynamic Skeleton Inter-
face over High-Speed ATM Networks. In Proceedings of
GLOBECOM ’96, pages 50–56, London, England, IEEE,
1996.

[12] A. Haeberlen, J. Liedtke, Y. Park, L. Reuther, and V. Uh-
lig. Stub-code performance is becoming important. In Pro-
ceedings of the First Workshop on Industrial Experiences with
Systems Software (WIESS), pages 357–363, San Diego, USA,
Oct. 2000.

[13] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The Design
and Performance of a Real-time CORBA Event Service. In
Proceedings of OOPSLA ’97, pages 184–200, Atlanta, GA,
Oct. 1997.

[14] H. Härtig, R. Baumgartl, M. Borriss, C.-J. Hamann,
M. Hohmuth, F. Mehnert, L. Reuther, S. Schönberg, and
J. Wolter. DROPS: OS support for distributed multimedia ap-
plications. In Proceedings of the Eighth ACM SIGOPS Euro-
pean Workshop, Sintra, Portugal, Sept. 1998.

[15] H. Härtig, M. Hohmuth, and J. Wolter. Taming Linux. In Pro-
ceedings of the 5th Annual Australasian Conference on Par-
allel And Real-Time Systems (PART ’98), Adelaide, Australia,
Sept. 1998.

[16] H. Härtig, L. Reuther, J. Wolter, M. Borriss, and T. Paul.
Cooperating resource managers. In Fifth IEEE Real-Time
Technology and Applications Symposium (RTAS), Vancouver,
Canada, June 1999.

[17] M. Hohmuth. Pragmatic nonblocking synchronization for
real-time systems. PhD thesis, TU Dresden, Fakultät Infor-
matik, Sept. 2002.

[18] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[19] J. Löser, L. Reuther, and H. Härtig. A streaming in-
terface for real-time interprocess communication. Techni-
cal Report TUD-FI01-09-August-2001, TU Dresden, Aug.
2001. Available from URL: http://os.inf.tu-dres-
den.de/ jork/dsi_tech_200108.ps.

[20] M. Masmano, I. Ripoll, and A. Crespo. Dynamic storage
allocation for real-time embedded systems, 2003. Work in
Progress, RTSS 2003, Cancun / Mexico.

[21] The Real-Time for Java Expert Group. The Real-Time Speci-
fication for Java, v1.0 edition.

[22] D. C. Schmidt, A. Gokhale, T. Harrison, and G. Parulkar.
A High-Performance Endsystem Architecture for Real-Time
CORBA. IEEE Communications Magazine, 14, Feb 1997.

8



[23] D. C. Sharp, E. Pla, and K. R. Luecke. Evaluating Mission
Critical Large-Scale Embedded System Performance in Real-
Time Java. In Proceedings of the 24th IEEE Real-Time Sys-
tems Symposium (RTSS), Cancun, Mexico, 2003.

[24] V. Yodaiken. The RTLinux manifesto. In Proceedings of The
5th Linux Expo, Raleigh, NC, Mar. 1999.

[25] V. Yodaiken and M. Barabanov. A Real-Time Linux. In Pro-
ceedings of the Linux Applications Development and Deploy-
ment Conference (USELINUX), Anaheim, CA, Jan. 1997. The
USENIX Association.

9


